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A B S T R A C T   

With age, the speech system undergoes important changes that render speech production more laborious, slower 
and often less intelligible. And yet, the neural mechanisms that underlie these age-related changes remain un-
clear. In this EEG study, we examined two important mechanisms in speech motor control: pre-speech move-
ment-related cortical potential (MRCP), which reflects speech motor planning, and speaking-induced suppression 
(SIS), which indexes auditory predictions of speech motor commands, in 20 healthy young and 20 healthy older 
adults. Participants undertook a vowel production task which was followed by passive listening of their own 
recorded vowels. Our results revealed extensive differences in MRCP in older compared to younger adults. 
Further, while longer latencies were observed in older adults on N1 and P2, in contrast, the SIS was preserved. 
The observed reduced MRCP appears as a potential explanatory mechanism for the known age-related slowing of 
speech production, while preserved SIS suggests intact motor-to-auditory integration.   

1. Introduction 

The act of speaking is one of the most complex actions in the vast 
human motor repertoire, and one that shows evidence of decline with 
aging. During speech production, not only do we need to plan incredibly 
precise and fast sequences of (co-) contractions in hundreds of muscles 
located in the lips, tongue, velum, vocal folds and respiratory system, 
but we also need to monitor the flow of resulting sensory (acoustic and 
somatosensory) feedback, comparing incoming with predicted 
feedback. 

With age, several components of the speech system undergo impor-
tant changes—anatomical, physiological and functional—which, in 
turn, can result in age-related difficulties. Specifically, the passage of 
time alters the physiology of the vocal tract (Liu et al., 2021; Pontes 
et al., 2006; Rother et al., 2002), the larynx (Bloch & Behrman, 2001; 
Honjo & Isshiki, 1980; Kersing & Jennekens, 2004; Pontes et al., 2005; 
Ximenes Filho et al., 2003), and the respiratory system (Lalley, 2013; 
Linville, 1996; Zeleznik, 2003). Associated changes include reduced 
vocal stability (e.g. Lortie et al., 2015; Wilcox & Horii, 1980), reduced 
loudness (Baker et al., 2001), slower and more variable speech (e.g. 
Bilodeau-Mercure & Tremblay, 2016; Jacewicz et al., 2009; Morris & 

Brown, 1987; Padovani et al., 2009; Sadagopan & Smith, 2013; Smith 
et al., 1987b; Tremblay & Deschamps, 2016; Tremblay et al., 2018; 
Tremblay et al., 2017) as well as a decline in accuracy across a range of 
speech tasks (Bilodeau-Mercure et al., 2015; Gollan & Goldrick, 2018; 
Sadagopan & Smith, 2013; Tremblay et al., 2018; Tremblay et al., 2023). 
Despite this body of documented age-related differences, the neural 
mechanisms that underlie these differences remain largely unknown. 
Magnetic resonance imaging (MRI) studies have shown age differences 
in BOLD MRI signal in several sensorimotor and executive control areas 
including the primary motor cortex, the pars opercularis of the inferior 
frontal gyrus (IFG) and the cingulate cortex (Tremblay et al., 2017). MRI 
has also revealed age-dependent relationships between cortical thick-
ness and speech responses (reaction time and response duration) in 
several areas including the insular cortex, supratemporal cortex, inferior 
frontal sulcus and bilateral caudate (Tremblay & Deschamps, 2016). 
Together, these results suggest broad age-related changes to the speech 
motor system but also beyond. 

Another approach to examining speech production mechanisms in 
aging is to record electroencephalography (EEG), which could reveal 
physiological differences in the neural networks supporting speech 
production. In young adults, EEG studies have revealed that speech 
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production is characterized by two important mechanisms: movement- 
related cortical potential (MRCP) and speaking-induced suppression 
(SIS) (Sato, 2022; Wang et al., 2014). MRCP (also referred to as readi-
ness Potential [RP] or Bereitschaftspotential [BP] for self-paced move-
ment) is a slow negative deflection occuring on central electrodes 
around 1000 ms prior to the onset of a self-paced movement (Kornhuber 
& Deecke, 1965; Libet et al., 1983), reaching the maximum negativity 
near movement onset (Tremblay et al., 2008), and followed by a positive 
rebound (Birbaumer et al., 1990; Pereira et al., 2017). MRCPs, preceding 
both speech and oral non-speech movement production, are related to 
movement planning and are thought to reflect “the accumulation and 
coordination of neural computations related to action planning and preparing 
sensory systems for their expected consequences” (Wang et al., 2014). Using 
EEG, Johari et al. showed that vowels generated following unpredictable 
cues are associated with longer RT and greater premotor activity in older 
compared to younger adults, while no difference was found in the pre-
dictable condition (Johari et al., 2019). The authors interpreted this age- 
related increase in brain response as reflecting the recruitment of 
additional neural resources to compensate for the decline of cognitive 
and sensorimotor mechanisms during speech motor timing processing. 
In a follow-up publication using the same experimental paradigm, 
Johari showed that, compared to younger adults, older adults exhibited 
slower reaction time and increased event-related desynchronization 
(ERD) of the alpha and beta bands before and after speech production 
(Johari & Behroozmand, 2020). These results suggest age differences in 
pre-movement EEG activity reflecting declining motor control. 

In addition to MRCP, another important mechanism for speech 
production is speaking-induced suppression or SIS, a well-established 
phenomenon characterized by a suppression of auditory evoked re-
sponses to self-produced speech (e.g., Curio et al., 2000; Ford & 
Mathalon, 2004; Ford et al., 2001; Heinks-Maldonado et al., 2006; 
Houde et al., 2002; Niziolek & Guenther, 2013; Numminen et al., 1999; 
Sato, 2022; Sato & Shiller, 2018; Ventura et al., 2009). SIS is revealed by 
comparing auditory neural responses to speaking vs. passive listening. 
Specifically, it is measured on N1 (and corresponding M100) auditory 
evoked potential (AEP) originating mainly from the supratemporal 
plane of the auditory cortex (Naatanen & Picton, 1987; Woods, 1995). 
SIS is thought to index auditory predictions of speech motor commands 
by means of efference copy and corollary discharge and to reflect a 
partial neural cancellation of the incoming sensory feedback to self- 
generated speech, as well as the computation of an error signal, allow-
ing talkers to adjust their speech motor output toward the auditory 
sensory target when there is a mismatch between predicted and actual 
auditory feedback. Hence, during speaking, when feedback matches 
prediction, auditory responses are reduced compared to passive 
listening to playback of the same acoustic signal. The SIS appears 
therefore as a core mechanism underlying speech motor control. 

This mechanism—the SIS—appears to be vulnerable to aging, at least 
in those with disorders affecting speech production such as Parkinson 
disease (PD) and Alzheimer disease (AD). It is well documented that 
individuals with PD do not perceive the sound of their own voice in the 
same way as healthy individuals, while their general listening capacities 
are unaltered (Fox & Ramig, 1997; Ho et al., 2000). This may suggest 
dysfunctions in the integration of auditory and/or somatosensory in-
formation with motor commands during speech production. Consistent 
with this notion, one study has shown that individuals with PD have a 
reduced SIS (Railo et al., 2020), though another group did not report 
such a reduced SIS in PD (Huang et al., 2016), but nevertheless reported 
neurophysiological differences in PD patients’ responses to their voice, 
with larger P2 auditory evoked response. Further, one study has shown 
that SIS is reduced in patients with Alzheimer disease (Kim et al., 2023). 
Despite evidence for a defective SIS mechanism in AD and PD, little is 
known about the way SIS evolves over the lifespan, and whether a 
deficient SIS mechanism could underscore the known impacts of aging 
on speech production. 

The goal of the present study was therefore to examine the normal 

aging of sensorimotor processing during speech production, focusing on 
MRCP, SIS and N1/P2 to shed new lights on the origin of age-related 
speech production difficulties. To this end, we compared the neuro-
physiological response to a simple self-paced vowel production task and 
a vowel perception task in healthy young and older adults. Given the 
scarcity of studies examining the electrophysiological basis of speech 
production in aging, the present study is in part exploratory. However, 
based on prior work from Johari et al., we expected that MRCP would be 
higher in older adults, as a potential explanatory mechanism for the 
known age-related slowing of speech production. Regarding the SIS, 
given the evidence for a defective SIS mechanism in abnormal aging (AD 
and PD), we wanted to examine whether this mechanism shows signs of 
abnormality in normal aging, as a potentially explicative factor for 
normal age-related speech production decline. 

2. Methods 

2.1. Participants 

Forty right-handed French-speaking healthy adults participated in 
the study after giving informed consent. Participants were divided into a 
younger and an older group. The data from the younger group were 
published in Sato (Sato, 2022) and included 20 adults (12 females), with 
a mean age of 27 ± 6 years (20–39 years) and an average of 16 ± 2 years 
of education (range: 11–20 years). The older group included 20 adults 
(12 females), with a mean age of 71 ± 5 years (61–78 years) and an 
average of 15 ± 3 years of education (range: 9–20 years). All partici-
pants reported normal or corrected-to-normal vision and were allowed 
to wear their glasses or corrective lenses during the experiment. Par-
ticipants reported no history of hearing, speaking, language, neurolog-
ical and/or neuropsychological disorders. The cognitive functioning of 
all participants was evaluated using the Montreal Cognitive Assessment 
scale (MoCA) (Nasreddine et al., 2003; Nasreddine et al., 2005). Par-
ticipants’ characteristics are detailed in Table 1. The study took place on 
site and with the agreement of the “Centre d’Expérimentation sur la 
Parole” (Aix-Marseille University, France), the protocol being carried 
out in accordance with the ethical standards of the Declaration of Hel-
sinki (World Medical, 2013) and participants paid for the time spent in 
the study. 

2.2. Experimental procedures 

The experimental protocol was adapted from a well-defined vocal 
production and perception EEG protocol for studying corollary 
discharge (Ford et al., 2010) and was described in Sato (Sato, 2022) for 
the younger group. The experiment was carried out in a dimly lit sound- 
attenuated room and consisted of a speech production and perception 
task during which EEG was recorded, as well as a Multimodal Speech 
Identification Task. 

2.2.1. Speech Production and Perception Task 
Participants were asked to produce vowels in a self-paced manner for 

3 min, while listening to their auditory feedback through earphones 
(speech production condition). Following the production condition, 
subjects passively listened to a recording of their speech production 
(speech perception condition). To limit adaptation effects, three vowels 
were used: /a/, /ø/ and /e/. The vowels differed in terms of height and/ 
or roundedness phonetic features: the French /a/ vowel is produced 
with the jaw opened and the lips unrounded, the French /ø/ vowel is 
produced with the jaw mid-opened and the lips rounded, and French the 
/e/ vowel is produced with the jaw mid-opened and the lips unrounded 
and stretched back. 

In the production condition, participants were asked to randomly 
produce one vowel every second or every other second until asked to 
stop after 3 min. To limit adaptation effects, they were also asked not to 
produce the same vowel consecutively (e.g., /a/-/a/) and not to repeat 
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the same sequence of vowels through the entire recording (e.g., /a/-/ 
ø/-/e/-/a/-/ø/-/e/…). Acoustic recordings are described in Sato (2022) 
for the younger group. During the production condition, participants’ 
verbal responses were recorded using a condenser shotgun microphone 
(NTG-2, Røde, Sydney, Australia) located approximately 25 cm from the 
mouth, with audio digitizing done at 48 kHz. To minimize the effects of 
bone conduction, the acoustic signal level played back through 
earphones (T205, JBL, Northridge, USA) was 10 dB greater than the 
signal at the microphone (calibrated prior to testing using a 1000 Hz 
pure tone). During the speech perception condition, the set up for the 
presentation of auditory stimuli was identical to the setup for the pro-
duction condition. The microphone and earphones were connected to a 
computer (Zbook 15 Workstation, Hewlett-Packard, Palo Alto, USA) 
equipped with 32 GB RAM through a USB audio interface (iO2, Alesis, 
Cumberland, USA). In addition, in both conditions, the acoustic signal 
sent to the earphones was duplicated and sent to the EEG Biosemi system 
equipped with an auxiliary connector for isolated sensors and synchro-
nized with EEG recordings to determine offline the acoustical triggers 
for the EEG analyses (refer to the next section). 

After being familiarized with EEG muscle artefacts (eye movements, 
eye blinks, articulatory movements), participants were asked to produce 
vowels in a natural manner but with minimal force/tension in the lip 
and jaw muscles. This was aided further by the instruction to produce 
vowels with a constant/natural intensity and duration, as well as to 
maintain a neutral open mouth posture between each vowel. For the 
perception condition, participants were asked to passively listen to the 
recording of their own vowels. 

A short training session was performed prior to beginning the EEG 
data collection to ensure that no artifact was present in the EEG signal 
and to confirm that participants understood the task. The production 
condition was followed by a short break, then the perception condition 
was started. 

2.3. EEG recordings 

EEG recordings were described in Sato (2022) for the younger group. 
In all tasks, EEG data were continuously recorded using the Biosemi 
Active Two AD-box EEG system operating at a 512 Hz sampling rate. 
Since MRCP and N1/P2 AEPs have maximal response over fronto-central 
sites (Naatanen & Picton, 1987; Scherg & von Cramon, 1986; Shibasaki 
et al., 1980), and as recommended by Ford et al. (2010), EEG were 
collected from F1, Fz, F2, FC1, FCz, FC2, C1, Cz, C2 fronto-central scalp 
electrodes (Electro-Cap International, INC), according to the interna-
tional 10–20 system. Two additional electrodes served as ground elec-
trodes (Common Mode Sense [CMS] active and Driven Right Leg [DRL] 
passive electrodes). Horizontal (HEOG) and vertical (VEOG) eye 
movements were recorded using electrodes positioned at the outer 
canthus of each eye and above the left eye. In addition, two external 
reference electrodes were attached over the left and the right mastoid 
bones. Before the experiment, the impedance of all electrodes was 
adjusted to get low offset voltages (the impedance of each electrode was 
kept below 10 uV) and stable DC. 

2.3.1. Multimodal Speech Identification Task 
Following EEG recording, participants performed a behavioural 

speeded forced-choice vowel identification task. This task was included 

to determine participants’ auditory and visual speech abilities. The 
stimuli consisted of auditory, visual and audiovisual /a/, /ø/ and /e/ 
vowels recorded by a native French female speaker in a similar set-up as 
the one used in the EEG experiment. Multiple utterances of each vowel 
were recorded using a microphone (NTG-2, Røde, Sydney, Australia) 
located approximately 25 cm from the mouth, and a digital video 
camera (C922, Logitech, Lausanne, Switzerland) located approximately 
50 cm from the head. Audio digitizing was done at 48 kHz. Video 
digitizing was done at 30 frames per second with a resolution of 1080 ×
1920 pixels. Using Adobe Premiere (Adobe systems, San Jose, USA) and 
Praat (Boersma & Weenink, 2011), one set of clearly articulated /a/, /ø/ 
and /e/ tokens were selected and edited based on acoustic and visual 
properties. All stimuli were 833 ms long (25 frames) with a mean vowel 
duration of 362 ms (± 18 SD), a mean vowel onset of 349 ms (± 13 SD) 
and a mean intensity of 81 dB (± 1 SD). For each of the three audiovisual 
stimuli, auditory-only and visual-only stimuli were built by either 
replacing all visual frames by the first still neutral image or by removing 
the acoustic signal. 

On each trial, participants were asked to identify one vowel (/a/, /ø/ 
or /e/) as quickly as possible by pressing one of three keys on a keyboard 
with their right hand. No feedback was provided. The response key 
designation was fully counterbalanced across both groups and partici-
pants. This task consisted of 45 trials (3 modalities x 3 vowels x 5 trials) 
presented in a fully randomized order, including 15 trials per modality. 

2.4. Analyses 

2.4.1. Multimodal Speech Identification Task 
In the multimodal speech identification task, the percentage of cor-

rect responses and median RTs (calculated from the acoustic onset of 
each vowel) were calculated for each participant and each condition. 
ANOVAs were performed separately on these measures with the mo-
dality (Audio, Visual and Audio-Visual) as a within-participant factor 
and the group (younger, older) as a between-participant factor. The 
MoCA score and the sex were included as covariates. 

2.4.2. Speech Production and Perception Task 
Acoustic analyses were described in Sato (2022) for the younger 

group. Acoustic analyses were performed using version 5.3 of the Praat 
software (Boersma & Weenink, 2011). For each participant, a semi- 
manual procedure was first performed to determine the onset and 
offset of the ~5000 vowels recorded vowels. Using the Speech Corpus 
Toolkit for Praat (Lennes, 2017), pauses between each vowel were 
automatically identified, based on minimal duration and low intensity 
energy parameters. Vowel boundaries were then fine-tuned manually 
based on waveform and spectrogram information. In addition, onsets 
and offsets were defined according to a continuous voicing period, 
without pause, based on the lowest frequency part of the wide-band 
spectrogram (i.e. < 300–400 Hz). All vowels were listened to and 
labelled by one author (MS). Low quality vowels (e.g., including hesi-
tations, transient silent phonatory periods, diphtongues) and/or 
including acoustic/electrical noise were removed from the acoustic and 
EEG analyses (on average, 5.5%±3 SD and 4.1%±2 SD) for the younger 
and older groups, without significant difference between the tasks, F 
(1,38) = 1.1). On average, after low quality vowel rejection, the number 
of analyzed vowels per participants was 120±8 (/a/: 39; /ø/: 41; /e/: 

Table 1 
Participants’ characteristics.   

Younger adults Older adults t-test 

Characteristics M SD min max M SD min max t p 

Age in years  26.75  5.71  20.00  39.0  70.53  5.03  61.18  78.44  25.72 ≤.001 
Education in years  15.95  2.35  11.00  20.0  14.90  3.35  9.00  20.00  1.1465 0.2596 
MoCA (/30)  28.95  1.23  26.00  30.0  27.15  1.66  23.00  30.00  3.8867 ≤.001 

Note. M = Mean; SD = . Standard deviation of the mean. Bold font is used to identify significant effects and interactions. 
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40) for the 20 younger participants and 132±6(/a/: 43; /ø/: 45; /e/: 44) 
for the 20 older participants (see Table 3). Vowel onsets were saved as 
triggers, which were later used for EEG analysis (with vowel onsets 
matched with the acoustic signal recorded in the analog channel of EEG 
data (see Ford et al., 2010)). 

For each vowel, the maximum peak intensity was calculated using 
parabolic interpolation. The fundamental frequency (f0), the first three 
formant frequencies (F1, F2 and F3) and the intensity were averaged from 
a period defined as ±25 ms of the maximum peak intensity (Duckworth 
et al., 2011; Kent & Vorperian, 2018). f0 was estimated using an auto-
correlation procedure with a pitch range of 150–300 Hz for females and 
75–200 Hz for males. F1, F2 and F3 were estimated using LPC analysis 
(Linear Predictive Coding, Burg method), with LPC parameters adjusted 
on a per-subject basis to avoid/minimize the occurrence of spurious 
formant values. The intensity was computed using the mean energy 
averaging method. 

For each participant and each vowel, the number of occurrences, the 
number of repetitions (i.e., sequences of the same vowel), the median 
inter-trial duration, mean vowel duration, mean intensity, and mean f0, 
F1, F2, F3 were computed. To identify potential group difference in intra- 
individual variability, SEM was computed on the inter-trial duration, 
vowel duration, intensity, f0, F1, F2, F3. Finally, the F1-F2-F3 triangular 
/a/-/ø/-/e/ vowel space area (defined as the Pythagorean sum of the 
areas of the respective projections on the three principal planes) was 
calculated, as a quantitative index of articulatory working space (for a 
review, see Kent & Vorperian, 2018). 

Two-way repeated-measure ANOVAs were performed separately on 
these measures with the vowel (/a/, /ø/, /e/) as a within-participant 
factor and with the age group (younger, older) as a between- 
participant factor. In addition, a one-way ANOVA was performed on 
F1-F2-F3 triangular vowel space area with the age group (younger, older) 
as a between-participant factor. 

2.4.3. EEG Data Analyzes 
EEG analyses were described in Sato (2022) for the younger group. 

EEG data were processed using the EEGLAB software version 2020 
(Delorme & Makeig, 2004) running on Matlab (Mathworks, Natick, USA; 
version R2019a). For each participant, EEG data were first re-referenced 
to the average of left and right mastoids, and band-pass filtered using a 
two-way least square FIR filtering (1–30 Hz). Residual sinusoidal noise 
from scalp channels was further estimated and removed using the 
EEGLAB CleanLine plug-in (version 2012). Scalp channels were then 
automatically inspected, and bad channels interpolated using the 
EEGLAB Clean_rawdata plug-in (version 0.34). On all channels, eye 
blinks, eye movements, speech-related movements and other motion 
artefacts were detected and removed using the EEGLAB Artifact Sub-
space Reconstruction plug-in (version 0.13). Based on a sliding-window 
principal component analysis, this algorithm rejected high-variance bad 
data periods by determining thresholds based on clean segments of EEG 
data. 

To evaluate the movement-related cortical potential (MRCP) while 
taking into account its influence on AEPs, two analyses based on a 
distinct epoching procedure were performed. The first analysis was 
designed to evaluate N1/P2 AEPs subtracting the temporally contingent 
influence of MRCP on AEPS. To this end, EEG data were segmented from 
− 100 ms to 300 ms relative to the acoustic onset and corrected relative 
to a − 100 ms to 0 ms baseline. The second analysis was designed to 
examine the time-course of MRCP and to calculate N1/P2 AEPs in 
relation to a baseline assumed to be similar across all tasks. Since RP has 
been shown to occur approximately 300 ms before vowel production 
(Wang et al., 2014), EEG data were here segmented from − 1000 ms to 
300 ms relative to the acoustic onset and corrected relative to a − 1000 
ms to − 900 ms baseline. 

2.5. First epoching procedure [-100 ms to 300 ms] 

EEG data from /a/, /ø/ and /e/ vowels were averaged together and 
segmented into 400 ms epochs (from − 100 ms to 300 ms relative to the 
acoustic onset), corrected from a − 100 ms to 0 ms baseline. Epochs with 
an amplitude change exceeding ±100 uV at any channels were 
removed, and EEG data were averaged over the nine F1, Fz, F2, FC1, 
FCz, FC2, C1, Cz, C2 fronto-central electrodes. On average, the entire 
preprocessing pipeline rejected 23% of epochs and left 90 epochs per 
task for the younger group and rejected 25% of epochs and left 99 
epochs per task for the older group (for details, see Supplementary 
Table 2.1). 

For each participant, N1/P2 amplitude and latency were first 
computed on the EEG waveform averaged over the two tasks, from a 
fixed temporal window of 40–120 ms for N1 and of 120–240 ms for P2. 
In the younger group, clear and homogeneous N1 and P2 AEPs were 
observed for all but two participants, who were removed from the EEG 
analyses. For one of these two participants, no N1/P2 AEPs were 
observed in the EEG waveform, while, for the second participant, both 
the latency and amplitude were ±2 SD away from the mean). In the 
older group, one participant was removed from the EEG analyses, with 
no P2 AEPs observed in the EEG waveform. On the remaining partici-
pants, for each participant and each task, N1 and P2 amplitudes and 
latencies were automatically computed based on two fixed temporal 
windows defined as ±30 ms of the N1 and P2 peak latencies previously 
calculated from the individual waveform averaged over the four tasks 
(Ganesh et al., 2014; Treille et al., 2014). 

Additionally, we also calculated a SIS value directly by subtracting 
the amplitude of the N1 during speech production from the amplitude of 
N1 during speech perception. 

Two-way repeated-measure ANOVAs were performed separately on 
the number of rejected trials and on N1 and P2 amplitudes and latencies, 
with Task (perception, production) as a within-participant factor and 
age group (younger, older) as a between-participant factor. Sex and 
MoCA scores were included as covariates to control for potential con-
founds. Statistical analyses were conducted with r studio version 
2023.09.0+463. A final one-way ANOVA examined SIS with age group 
(younger, older) as a between-participant factor, and Sex and MoCA 
scores as covariates to control for potential confounds. 

2.6. Second epoching procedure [-1000 ms to 300 ms] 

As for the first analysis, EEG data from /a/, /ø/ and /e/ vowels were 
averaged together but segmented into 1300 ms epochs (from − 1000 ms 
to 300 ms relative to the acoustic onset of the vowels), corrected using a 
baseline ranging from a − 1000 ms to − 900 ms. Epochs with an ampli-
tude change exceeding ±100 uV at any channels were removed, and 
EEG data were averaged over the nine F1, Fz, F2, FC1, FCz, FC2, C1, Cz, 
C2 fronto-central electrodes. On average, the preprocessing pipeline 
rejected 34% of epochs for the younger adults, leaving 77 epochs per 
task, and 37% for the older group, leaving 84 epochs per task (for de-
tails, see Supplementary Table 3.1). 

For each participant and each task, the mean amplitude of the suc-
cessive 100 ms periods from − 900 ms to 0 ms prior to the acoustic onset 
were calculated to examine the time course of MRCP. N1 and P2 am-
plitudes and latencies were computed based on two fixed temporal 
windows defined as ±30 ms of the N1 and P2 peak latencies calculated 
from the individual waveform averaged over the two tasks. 

Additionally, we also calculated a SIS value directly by subtracting 
the amplitude of the N1 during speech production from the amplitude of 
N1 during speech perception. 

A three-way repeated-measure ANOVA was performed on the time 
course of MRCP with Interval ([-900 ms to − 800 ms]…[-100 ms to 
0 ms]) and Task (perception, production) as within-participant factors 
and Age Group (younger, older) as a between-participant factor. Two- 
way repeated-measure ANOVAs were performed separately on N1 and 
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P2 amplitudes and latencies, with Task (perception, production) as a 
within-participant factor and age group (younger, older) as a between- 
participant factor. Sex and MoCA scores were included as covariates 
to control for potential confounds. 

A final one-way ANOVA examined SIS with age group (younger, 
older) as a between-participant factor, and Sex and MoCA scores as 
covariates to control for potential confounds. 

3. Results 

3.1. Multimodal Speech Identification Task 

Overall accuracy was high in the multimodal speech identification 
task (~96%). For the younger adults, accuracy was 98.2%, while it was 
93.4% for older adults. The full results are presented in Table 2A and 
Fig. 1A. The analysis showed a significant effect of Modality, a main 
effect of Group, and an interaction between Group and Modality. Post- 
hoc analyses revealed that accuracy in the Audio Modality was signifi-
cantly higher than in the Visual Modality (b =.0383, SE =.0155, p 
=.0394). The interaction revealed that accuracy was lower for the older 
compared to younger adults but only in the Visual Modality (b = 0.0940, 
SE = 0.0234, p =.0001). 

The average median RT was 649 ms. For the younger adults, it was 
606 ms (SE =22.1) while it was 689 ms (SE =22.1) for older adults. The 
full results are presented in Table 2B and Fig. 1B. The analysis showed 
significant main effects of Modality and Group, with older adults having 
longer RT overall. Post-hoc analyses revealed that RTs were longer than 
in the Visual compared to the Audio Modality (b = 105, SE = 34.8, p 
=.0084); and in the Visual compared to the Audio-Visual Modality (b =
138, SE = 34.8, p =.0004). 

3.2. Speech production and perception task 

Analyses of the acoustic recordings confirmed that the production 
task was correctly performed by all participants. Group differences were 
found on several dependent variables: number of occurrences, number 
of repetitions, inter-trial interval, vowel duration, F0, F2 and F3. There 
was no interaction between Group and Vowel on any of the dependent 
variables. As detailed in Table 3 and illustrated in Fig. 2, older adults 
produced more utterances and more repetitions; they produced longer 
vowels at a faster pace and had lower F0, F2 and F3 but similar intensity. 
Their vowel space was similar. The full statistical results are provided as 
Supplementary Material 1. 

3.3. EEG signal 

3.3.1. First epoching procedure [-100 ms to 300 ms] 
A similar number of trials was observed across tasks, with on average 

125 trials per task (refer to Supplementary Table 2.1). The ANOVA 
revealed a task difference in N1 and P2 amplitude, with reduced 
amplitude in the production compared to the perception tasks, indica-
tive of a SIS. Further, Group differences were found on both N1 and P2 
latency with longer latency for older compared to younger adults. 

Descriptive statistics and statistical results for the group effect are pro-
vided in Table 4; the full statistical results are reported in Supplementary 
Table 2.2 and illustrated in Figs. 3 and 4 (top row). 

3.3.2. Second epoching procedure [-1000 ms to 300 ms] 
Compared to the first analysis, due to longer epochs, the EEG signal 

included more artefacts. A similar number of trials was observed across 
tasks (refer to supplementary Table 3.1). 

Visual inspection of the data revealed clear MRCPs during vowel 
production for both younger and older adults (Fig. 5). MRCPs were 
characterized by a slow negative deflection on fronto-central sites from 
800 ms to 300 ms prior to the vocalic onset. The ANOVA revealed main 
effects of Task, Group and Interval. As expected, amplitude was more 
negative in the production compared to perception tasks. A significant 
Interval x Task interaction was also observed, with a more negative 
amplitude in the production compared to perception tasks from − 800 
ms to − 200 ms. The main effect of Group revealed that the amplitude of 
MRCP was more negative in older compared to the younger participants. 
The Group by Task interaction revealed that older adults exhibited more 
negative amplitude in the production task compared to younger adults. 
The main results are reported in Table 5 and the full ANOVA results are 
reported in Supplementary Tabe 3.2. 

Turning now to AEP, as detailed in Table 5 and Supplementary 
Material 3 and illustrated in Fig. 4 (bottom row), the ANOVA revealed a 
task difference in N1 amplitude, with reduced amplitude in the pro-
duction compared to the perception tasks (on average, − 2.4 μV vs. − 4.9 
μV, respectively). For P2, there was no main effect of Group or Task and 
no interaction. As for latencies, Group differences were found on both 
N1 and P2. N1 and P2 latencies were longer for the older compared to 
younger groups. 

3.4. SIS 

A final analysis compared the amplitude of the SIS on N1 (N1 
amplitude perception—N1 amplitude production) across groups using a one- 
way ANOVA, separately for the first and second epoching procedures. As 
shown in Fig. 4E and J, the analysis revealed a significantly reduced SIS 
in older adults in the second epoching procedure. Table 6 provides the 
details of the analyses. 

4. Discussion 

With age, the motor stages of speech production evolve naturally. As 
a consequence, a person’s age is easily guessed from their speech (e.g., 
Lortie et al., 2018). Given that articulation consists of a rapid flow of 
very precise movements of the lips, tongue, soft palate and vocal folds, 
which must be coordinated with respiration, age-related changes in 
speech production appear unavoidable. Because decline in speech pro-
duction can negatively impact communication-mediated activities such 
as family gatherings, understanding the manner and extent to which 
speech production evolves with age is crucial to develop mitigation and 
prevention strategies. Yet, while age differences in speech production 
are well documented, the underlying mechanisms remain elusive. This 

Table 2 
ANOVA results for the multimodal speech identification task.   

A. Accuracy B. RT 

Term df SS MS F p η 2 df SS MS F p η 2 

Modality 2  0.04  0.02  3.61  0.03  0.05 2 416,800 208,400  8.61 <.001  0.12 
Group 1  0.05  0.05  10.54  0.00  0.08 1 234,700 234,700  9.70 0.00  0.07 
Modality: Group 2  0.03  0.02  3.29  0.04  0.05 2 7529 3765  0.16 0.86  0.00 
MoCA 1  0.01  0.01  1.02  0.31  0.01 1 1412 1412  0.06 0.81  0.00 
Sex 1  0.00  0.00  0.86  0.36  0.01 1 14,649 14,649  0.61 0.44  0.00 
Residuals 112  0.539  0.005    112 2,710,000 24,197    

Note. SS = Sum of squares; MS = Mean squares. Bold font is used to identify significant effects and interactions. 
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study therefore aimed to examine the normal aging of the motor stages 
of speech production, focusing on MRCP, AEPs and SIS to shed new 
lights on cortical speech mechanisms. To this end, we compared neural 
responses evoked by speech production to those evoked by playback of 
the same utterances in healthy young and older adults. Taken together, 
our results indicate that male and female speakers retain good vowel 
production abilities across the lifespan, but that MRCP and AEPs, but not 
SIS, showed clear age-related differences. 

Our hypothesis, which was verified, was that normal aging would be 
associated with differences in speech rate —in the form of longer vowel 
duration—consistent with prior studies (e.g. Marczyk et al., 2022; 
Tremblay et al., 2018; Tremblay et al., 2019), even after controlling for 
sex and cognitive level. However, detailed acoustic analyses of the 
corpus of vowels produced by the participants did not reveal strong age- 
related differences in non-temporal metrics. The distribution of F1, F2 
and F3 formant values was consistent with those previously reported for 
French vowels (Calliope, 1989). Importantly, there was no group dif-
ference in vowel space despite some differences in F2 and F3. This is 
consistent with a recent study that examined vowel production in heathy 
aging (Marczyk et al., 2022). In contrast, in a recent analysis of the “Up” 
corpus (Gahl et al., 2014)—which is based on a series of documentary 
films featuring a group of adults aged between 21 and 49 years, filmed at 
seven-year intervals, over a period of 56 years (Apted, 1977, 1984, 
1991, 1998)—a shift in vowel space towards the periphery was found 
from young to middle-aged adulthood (Gahl & Baayen, 2019). However, 
since no data were available on old adults, it is possible that these 
changes represent maturation of the system rather than age-related 
decline. Together, these findings suggest that articulatory space is 

relatively stable in aging and that it may not represent the mechanism 
that would explain age-related changes in intelligibility. 

4.1. Effect of age on MRCP 

Our analyses revealed a slow negative deflection on fronto-central 
sites occurring 800 ms to 300 ms prior to vowel production, during 
the preparatory phase of speech production, followed by a positive 
rebound from 200 ms to 0 ms prior to the vocalic onset. This time-course 
is in line with the literature on MRCPs/RPs and their reported temporal 
profiles for non-speech actions (Birbaumer et al., 1990; Kornhuber & 
Deecke, 1965; Libet et al., 1983). A similar pre-speech negative deflec-
tion has been shown in several studies in young adults during speaking 
(den Hollander et al., 2019; Jouen et al., 2021; Lancheros et al., 2020; 
Tremblay et al., 2008; Wang et al., 2014). Wang et al. localized this 
deflection to the posterior ventrolateral frontal lobe bilaterally (Wang 
et al., 2014), including the inferior frontal gyrus (IFG) and the posterior 
sensorimotor mouth area. Importantly, pre-speech IFG activity during 
the 300 ms before speaking was associated with SIS (see below) while, 
on the contrary, pre-speech activity in the sensorimotor mouth area was 
not related to N1 suppression, suggesting that it may represent the 
instantiation of the motor command itself rather than an efference copy 
or corollary discharge. 

Despite a similar overall profile in younger and older adults, MRCPs 
differed significantly for the older compared to younger adults, sug-
gesting age-related differences in speech motor planning and motor 
control. The amplitude of the negative deflection was significantly 
stronger in older adults during the preparatory phase of speech 

Fig. 1. Mean accuracy and RTs in the behavioural experiment for each of the Modality: auditory, audiovisual and visual; shown separately for the younger and older 
groups. Each dot represents one participant. The error bars represent standard errors of the mean. 

Table 3 
Mean vocal behaviours, acoustic values, and individual variability for /a/, /ø/ and /e/ vowels for the younger and older groups (based on ~ 5000 occurrences); SEM 
are provided in parentheses.  

Measurement Younger Group Older Group Group difference 

/a/ /ø/ /e/ /a/ /ø/ /e/ F P 

Number of utterances 39 (3) 41 (3) 40 (3) 43 (2) 45 (2) 44(2)  3.95  0.05 
Number of repetitions 1 (1) 1 (0) 1 (1) 3 (1) 4 (1) 3 (1)  12.15  0.001 
Inter-trial interval (ms) 1470 (103) 1494 (107) 1483 (103) 1318 (62) 1321 (65) 1310 (67)  5.86  0.02 
Vowel duration (ms) 216 (12) 227 (12) 220 (12) 273 (18) 289 (19) 280 (18)  22.59  <.001 
Intensity (dB) 69 (1) 70 (1) 70 (1) 72 (1) 72 (1) 72 (1)  3.5  0.06 
f0 (Hz) 171 (10) 174 (11) 174 (11) 135 (9) 140 (9) 139 (9)  80.86  <.001 
F1 (Hz) 704 (32) 406 (17) 399 (16) 693 (31) 371 (13) 359 (9)  3.23  0.08 
F2 (Hz) 1388 (34) 1545 (35) 2208 (53) 1286 (38) 1492 (36) 2133 (59)  7.27  0.01 
F3 (Hz) 2702 (55) 2545 (47) 2893 (41) 2639 (72) 2448 (56) 2811 (70)  4.49  0.04 
F1-F2-F3 vowel space area (Hz2) 151,449 (17558) 174,454 (25448) 0.68 0.41  
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production from 800 ms to 200 ms prior to the vocalic onset. Our results 
build from prior work from Johari et al. which showed that unpredict-
able (but not predictable) externally triggered are associated with 
greater premotor ERP activity in older compared to younger adults 
(Johari et al., 2019). In a follow-up publication Johari showed that, 
compared to younger adults, older adults exhibited increased event- 
related desynchronization in the alpha and beta bands before and 
after the speech production (Johari & Behroozmand, 2020). Interest-
ingly, in our study, vowel production was self-paced, which is known to 
engage stronger event-related desynchronization compared to exter-
nally triggered speech movements (Tremblay et al., 2008). Together, 
these findings suggest that the control of speech motor timing is altered 
in older adults because of less efficient neural processing, indexed by 
amplified premotor neural activation. This is consistent with the finding 
of age-related differences in the timing of the responses in the present 
study, with longer vowels and shorter inter-trial intervals, but also with 
a large body of evidence suggesting that the temporal characteristics of 
speech production are compromised in aging (e.g., Bilodeau-Mercure 
et al., 2015; Bilodeau-Mercure & Tremblay, 2016; Jacewicz et al., 2009; 
Marczyk et al., 2022; Morris & Brown, 1987; Padovani et al., 2009; 
Sadagopan & Smith, 2013; Smith et al., 1987a; Tremblay & Deschamps, 
2016; Tremblay et al., 2018; Tremblay et al., 2017). 

This finding is also consistent with evidence from brain imaging 
studies, which have shown that the cortical and subcortical systems 
supporting speech production change with age (Shuster et al., 2014; 
Sörös et al., 2011; Tremblay et al., 2013), including the striatum, a re-
gion involved in the preparation and execution of speech, the insular 
cortex, a region best known for its role in multimodal integration and 
executive control, and the supramarginal gyrus, known for its role in 
phonological encoding. A recent MRI study showed that structural 
decline in these different regions is associated with the production of 
longer syllable sequences in older adults (Tremblay & Deschamps, 
2016). Differences in the activity of the primary motor cortex, measured 
using fMRI, have been shown to correlate with changes in the duration 
of speech responses (Tremblay et al., 2017). 

In sum, the present results suggest that the neural preparation of self- 
paced vowels, despite the simplicity of the task, requires additional 
neural resources in older adults, which contributes to the body of evi-
dence showing that normal aging affects the timing of speech. While our 
groups differed in terms of their MoCA score, all analyses included the 
MoCA as a covariate. It is therefore unlikely that a difference in cogni-
tive level can account for the present findings. Additional research is 
needed to understand which specific mechanisms are affected by brain 
aging, such as phonetic encoding, motor sequencing and speech 

Fig. 2. Mean vocal behaviours and acoustic values for /a/, /ø/ and /e/ vowels for the younger and older groups (based on ~ 5000 occurrences). Each dot represents 
one participant; the error bars represent the standard error of the mean. 

Table 4 
Mean (SEM) N1/P2 raw amplitudes and latencies for the first epoching procedure [-100 ms to 300 ms].   

Younger 
group 

Older 
Group 

Group 
difference  

Production Perception Production Perception F P 

Amplitudes (µV)       
N1 − 3.35 (0.43) − 5.37 (0.59) − 3.40 (0.60) − 4.83 (0.48)  0.21  0.65 
P2 2.12 (0.56) 3.42 (0.63) 1.32 (0.83) 3.24 (0.44)  0.6  0.44 
Latencies (ms)       
N1 84 (3) 85 (3) 98 (4) 92 (2)  10.9  <.001 
P2 173 (7) 173 (3) 202 (9) 202 (5)  21.23  <.001  
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Fig. 3. A and B: Individual EEG waveforms for the younger and older groups on fronto-central electrodes averaged over the two tasks from the [-100 ms to 300 ms] 
epoching procedure (the orange lines represented the average of all participants). C. Average EEG waveform for each task for the younger and older groups. 

Fig. 4. AEP. Top row: first epoching procedure. A-D: Mean N1 and P2 AEP amplitudes and latencies for the younger and older groups. E. SIS amplitude. Bottom row: 
second epoching procedure. F-I: Mean N1 and P2 AEP amplitudes and latencies for the younger and older groups.. J. SIS amplitude. Each dot represents one 
participant; the error bars represent the standard error of the mean. 
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initiation in groups of older adults matched for cognitive and hearing 
levels. 

4.2. Effect of age on AEPs and SIS 

Overall, longer latencies were observed in older adults on N1 and P2 
AEPs in both epoching procedures. This suggests slower neural 

Fig. 5. A. Average EEG waveform for each task on fronto-central electrodes for the younger and older groups from the second epoching procedure [-1000 ms to 300 
ms]. B. Mean amplitude of MRCPs. Each dot represents one participant; the error bars represent the standard error of the mean. 

Table 5 
MRCP mean (SEM) amplitudes and N1/P2 amplitudes and latencies for the second epoching procedure [-1000 ms to 300 ms].   

Younger Group Older Group Group difference  

Production Perception Production Perception F P 

Amplitudes (µV)       
¡900–800 ms − 0.88 (0.32) − 0.73 (0.25) − 0.81 (0.51) 0.13 (0.32) 13.03 <.001 
¡800–700 ms − 1.61 (0.62) − 0.64 (0.33) − 1.71 (0.73) 0.18 (0.35) 
¡700–600 ms − 1.79 (0.65) − 0.05 (0.28) − 2.79 (0.83) 0.24 (0.29) 
¡600–500 ms − 1.63 (0.66) 0.17 (0.35) − 3.34 (1.08) − 0.04 (0.30) 
¡500–400 ms − 1.10 (0.72) 0.47 (0.34) − 3.57 (1.28) − 0.22 (0.30) 
¡400–300 ms − 1.04 (0.63) 0.32 (0.33) − 3.32 (1.20) − 0.09 (0.29) 
¡300–200 ms − 0.08 (0.57) 0.51 (0.32) − 1.99 (0.98) − 0.11 (0.27) 
¡200–100 ms 1.29 (0.63) 0.24 (0.29) − 0.31 (0.85) − 0.22 (0.29) 
¡100 0 ms 1.91 (0.74) 0.38 (0.35) − 0.11 (0.87) 0.25 (0.28) 
N1 − 1.58 (0.72) − 5.11 (0.57) − 3.20 (0.91) − 4.75 (0.53) 0.8 0.38 
P2 4.22 (0.74) 3.72 (0.69) 2.17 (0.75) 3.33 (0.37) 3.5 0.07 
Latencies (ms)       
N1 87 (4) 84 (3) 92 (3) 92 (2) 3.83 0.05 
P2 176 (6) 170 (3) 195 (9) 197 (6) 12.14 0.001  

Table 6 
ANOVA results for the SIS analysis.  

Term A. First Epoching Procedure B. Second Epoching Procedure 

df SS MS F p η 2 df SS MS F p η 2 

Group 1  3.229  3.229  0.527  0.473  0.015 1  36.419  36.419  4.462  0.042  0.116 
Sex 1  10.11  10.11  1.651  0.208  0.047 1  2.662  2.662  0.326  0.572  0.009 
MoCA 1  1.177  1.177  0.192  0.664  0.005 1  4.49  4.49  0.55  0.463  0.014 
Residuals 33  202.07  6.123    33  269.319  8.161     
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processing time for either encoding or processing and appears consistent 
with the longer RTs observed in the multimodal speech identification 
task. 

Our results show a classic SIS effect on N1 amplitude, with a reduced 
response in the production task compared to the perception task, 
consistent with previous EEG/MEG studies on efference copy and cor-
ollary discharge during speech production (e.g., Curio et al., 2000; Ford 
& Mathalon, 2004; Ford et al., 2001; Heinks-Maldonado et al., 2006; 
Houde et al., 2002; Niziolek et al., 2013; Numminen et al., 1999; Sato & 
Shiller, 2018; Ventura et al., 2009; Wang et al., 2014). Contrary to our 
hypothesis, age differences in SIS were modest: we found that SIS 
magnitude was reduced in older adults in the second epoching proced-
ure, that is, when AEPs were calculated in relation to a baseline outside 
the temporal windows of MRCP. However, when considering/subtract-
ing the temporally contingent influence of MRCP on AEPs in the first 
epoching procedure, SIS effect was evident for both groups and did not 
show group differences. Together with our analysis of the MRCP, these 
findings suggest that SIS is relatively resilient to age and does not play a 
major part in the difficulties experienced with older adults, whose dif-
ficulties would result from less efficient motor preparation rather than 
motor-to-auditory integration. 

4.3. Conclusions 

The present study adds new and important information about the 
aging of speech production mechanisms, by showing that pre-speech 
MRCP—which reflects motor planning of the upcoming respon-
se—differs extensively between healthy younger and older adults during 
a simple self-paced vowel production task and that, in contrast, SIS—-
which indexes auditory predictions of speech motor com-
mands—appears to be relatively preserved. Additional studies should 
strive to isolate and localize the speech planning processes that are 
affected by aging more precisely, using either EEG source localization 
procedures or magnetic resonance imaging. This information is crucial 
to the development of prevention or mitigation strategies such as 
excitatory brain stimulation methods to enhance declining speech- 
related processes, which could lead to enhanced communication in 
older adults and, in turn, preserved quality of life. 
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