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The supratemporal plane contains several functionally heterogeneous subregions that respond strongly to
speech. Much of the prior work on the issue of speech processing in the supratemporal plane has focused
on neural responses to single speech vs. non-speech sounds rather than focusing on higher-level computa-
tions that are required to process more complex auditory sequences. Here we examined how information
is integrated over time for speech and non-speech sounds by quantifying the BOLD fMRI response to stochas-
tic (non-deterministic) sequences of speech and non-speech naturalistic sounds that varied in their statistical
structure (from random to highly structured sequences) during passive listening. Behaviorally, the partici-
pants were accurate in segmenting speech and non-speech sequences, though they were more accurate
for speech. Several supratemporal regions showed increased activation magnitude for speech sequences
(preference), but, importantly, this did not predict sensitivity to statistical structure: (i) several areas showing
a speech preferencewere sensitive to statistical structure in both speech and non-speech sequences, and (ii) sev-
eral regions that responded to both speech and non-speech sounds showed distinct responses to statistical struc-
ture in speech and non-speech sequences. While the behavioral findings highlight the tight relation between
statistical structure and segmentation processes, the neuroimaging results suggest that the supratemporal
planemediates complex statistical processing for both speech and non-speech sequences and emphasize the im-
portance of studying the neurocomputations associatedwith auditory sequence processing. These findings iden-
tify new partitions of functionally distinct areas in the supratemporal plane that cannot be evoked by single
stimuli. The findings demonstrate the importance of going beyond input preference to examine the neural com-
putations implemented in the superior temporal plane.

© 2012 Elsevier Inc. All rights reserved.
Introduction

The human brain, particularly in the supratemporal plane, is
uniquely sensitive to the complex acoustical properties that are the
hallmark of the speech signal. The supratemporal plane is indeed sen-
sitive to many features of the speech signal, such as vowel formant
frequencies (Formisano et al., 2008; Naatanen et al., 1997; Obleser
et al., 2003, 2006; Poeppel et al., 1997; Reil, 1809), and consonants'
spectro-temporal composition (Obleser et al., 2007; Raizada and
Poldrack, 2007). The supratemporal plane can also distinguish between
phonological and non-phonological acoustical differences (Formisano
et al., 2008; Jacquemot et al., 2003; Obleser et al., 2010; Staeren et al.,
2009). This remarkable sensitivity has led some researchers to argue
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for some level of speech-specialization in non-primary areas of the
supratemporal plane.

Much of this prior work has askedwhether different types of sounds
are processed in dedicated (sometimes referred to as ‘specialized’)
brain areas in the supratemporal plane focusing on non-primary audi-
tory cortex. However, a different approach to studying speech and
non-speech processing in the supratemporal plane is to quantify the
extent to which subregions of the supratemporal plane are specialized
in terms of the type of neurocomputations they implement, rather
than in terms of the kind of stimulus they respond to more strongly
(‘prefer’). While the speech signal is undoubtedly a very unique input,
its individual components share similarities with other types of signal.
For instance, musical instruments and animal vocalizations have com-
plex spectral features. Moreover, sequential organization, which is a
hallmark of speech, is shared by other types of sensory signal such as
bird songs and music. For speech, sequential organization is based
on complex language-specific (i.e. phonotactic) constraints, which are
manifested in language-specific statistics. Specifically, syllables with
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high transition probabilities (TP) – the probability of transitioning from
one state or one syllable to another in a single step – tend to formwords
whereas those with lower TPs mark word boundaries. Because fluent
speech does not contain invariant acoustical cuesmarkingword bound-
aries (Cole and Jakimik, 1980; Lehiste and Shockey, 1972), access to sta-
tistical information, in particular TP, is critical for learning how to
segment continuous speech into its constituent units (i.e. syllables and
words), especially during early childhood where words boundaries
are unknown. Behavioral experiments have shown that infants, but
also adults, are sensitive to TP in speech (Newport and Aslin, 2004;
Pelucchi et al., 2009a,2009b; Pena et al., 2002; Saffran et al., 1996,
1999), as well as in non-speech auditory and visual stimuli (Fiser and
Aslin, 2001, 2002; Kirkham et al., 2002; Saffran et al., 1999, 2007). In
adulthood, statistical information can be used to predict upcoming syl-
lables and words. To illustrate, if a given syllable “x” can only be
followed by syllable “y”, then it follows that hearing “x” offers useful in-
formation for predicting “y”. This information can therefore be used to
disambiguate speech in degraded listening situations, or in the face of
an unfamiliar accent. Formal architectures that describe how predictive
codes can be implemented at a neural level have been gaining promi-
nence in various domains of perceptual learning (Friston and Kiebel,
2009; Rao and Ballard, 1999).

Despite the richness of the statistical information present in
speech, and the fact that humans exhibit sensitivity to this informa-
tion throughout the lifespan, there has not been much neurobiologi-
cal research on the neural underpinning of statistical information
processing. Little is known about temporal regions sensitive to statis-
tical information in the speech signal, and no study as directly com-
pared statistical information processing for speech and non-speech
inputs. Understanding this issue is the main motivation of the current
study. Prior magnetoencephalographic (MEG) studies demonstrated
sensitivity to statistical information in the right temporal-parietal
junction, including the most posterior part of the supratemporal
plane in a tone sequence (Furl et al., 2011) when statistical informa-
tion is quantified via TP. Consistent with this finding, Overath et al.
(2007) found that the bilateral planum temporale (PT) tracks statisti-
cal properties in tone series when statistics are quantified via Sample
Entropy (Overath et al., 2007). Specifically for speech, enhanced
activation in the posterior supratemporal plane has been found in
children and adults processing sequences of random syllables vs.
sequences with fixed syllable triads1 (McNealy et al., 2006, 2010).
Recently, fMRI studies have shown (i) sensitivity to TP structure in
sequences of pure tones in the parietal operculum was found, with
higher activity for both random and highly structured series than
for mid-ordered series (Tobia et al., 2012a), and (ii) sensitivity to
perceived changes in sequence regularity in a region of left superior
temporal gyrus (STG) (Tobia et al., 2012b).

These prior findings suggest that sensitivity to statistical infor-
mation in speech and non-speech inputs is present at the level of the
supratemporal plane. A fundamental yet unanswered issue is whether
statistical information for auditory inputs is processed in a domain-
general or domain-specific manner. To address this issue we examined
the neural basis of statistical information processing in speech and
non-speech complex natural sound sequences using functional MRI.
Departing from prior work, we did not include deterministic sequences
or fixed combinations (“words”) in our series, but manipulated the
statistical structures of sequences so that these ranged from random
(i.e. there is no statistical structure) to highly predictable though not
deterministic (i.e. sequences for which statistical information can be
used to build a probabilistic internal representation of the sequence
structure). Our first hypothesis was that core supratemporal regions
including the transverse temporal gyrus (TTG) and PT would respond
1 This manipulation can be considered an extreme variant of manipulation of statis-
tical features since the fixed-syllable condition is one associated with transition con-
straints whereas the random one is not.
to both speech and non-speech sounds. However, we expected only
PT to track the statistical structure of auditory inputs (based on
Overath et al., 2007). Our second prediction was that BOLD (Blood
Oxygen-Level Dependent) signal would vary as a function of the level
of statistical structure for both speech and non-speech reflecting
domain-general statistical information processing mechanisms. How-
ever, because statistics can only be computed on the basis of an
a-priori internal representation of the unique elements present in a sig-
nal established through segmentation, we also expected that statistical
processing of speech sequences would enjoy a significant advantage
since its constituent units (syllables in current study) are known
a-priori. This advantage could take the form of a lower responsemagni-
tude in a subset of supratemporal areas, or more spatially localized
activation patterns for speech reflecting reduced processing effort. In
contrast, when processing less familiar signals such as a non-native lan-
guage or sequences of environmental sounds, segmentation may be
more demanding since processing sequences consisting of unknown el-
ements may necessitate identifying the independent elements first. To
address this issue, in addition to examining differences in BOLD signal,
we also conducted two behavioral experiments (i) to examine the dis-
criminability of both speech and non-speech sounds, and (ii) to quanti-
fy the participants' ability to segment speech and non-speech auditory
sequences.We predicted that the speech sequenceswould bemore eas-
ily segmented because of their highly familiar nature; a prediction that
was verified. From a functional perspective, addressing these issues
would answer the question of whether speech enjoys a unique status
with respect to statistical processing in the supratemporal plane. From
a neurobiological perspective, this design allowed us to identify func-
tional regions in the supratemporal plane that differ in the extent to
which they are sensitive to statistical structure in auditory input.

Materials and methods

Participants

The participants were 20 healthy right-handed (Oldfield, 1971)
native Italian speakers (9 females; 24±4.5 years, education: 17.1±
3.64 years), with normal self-reported hearing, and no history of lan-
guage or neurological/neuropsychological disorders. The study was
approved by the Human research ethics committee of the University
of Trento in Italy.

Stimuli

Two types of complex acoustic stimuli were created: speech and
non-speech, which were equalized in duration (225 ms), sampling
rate (44 kHz), envelope (225 ms, ±15 ms fade in, ±15 ms fade
out) and root mean square (RMS) intensity.

Speech stimuli
The speech stimuli consisted of 70 non-meaningful Italian

consonant-vowel combinations (CV) (e.g. [ba]). A list of all syllables
is provided as Supplementary material S1. These syllables were cho-
sen based on their distributional properties, which were extracted
from itWaC, a large corpus (~1.5 billion words) of Italian Web pages
(Baroni et al., 2009). The itWaC corpus was automatically transcribed
and syllabified using a phonetic lexicon containing transcriptions
of about 400,000 Italian words (100 words commonly occurring in
itWaC but not in the original lexicon were added) (Cosi and
Avesani, 2001). Words not present in this lexicon were discarded.
Word-final consonants (and consonant clusters) that were followed
by a word-initial vowel were syllabified as onsets with the vowel
(e.g. /un amico/ was syllabified as [u.na.mi.ko] consistent with Italian
phonotactics). The resulting transcribed corpus contained more than
3 billion syllables; syllable frequency information was extracted
from this corpus to choose syllables to be used in this experiment. A
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3 e.g. /be-jo-mu-zi/.
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total of 5405 unique CV syllables were coded in the database. Of the
syllables that were chosen to form our corpus, the mean rank order
was 5165, and the median 5290, representing the 5% most frequent
syllables. The selected syllables were 3 orders of magnitude more
frequent than the mean: the mean/median log10 frequency for
these syllables was 6.58 and 6.61 respectively while the mean/
median for the entire dataset was 3.55 and 3.36 respectively. Hence,
the selected syllables were highly frequent, non-meaningful, Italian
consonant vowel (CV) syllables. These syllableswere composed of com-
binations of five vowels (/a, e, i, o, u/) and twenty-four consonants.2

A native male Italian speaker from the North of Italy pronounced
these syllables in a sound-attenuated booth. Each syllable was pro-
duced at least five times each, always within a carrier sentence
(“adesso dico [ba]”; translation: “now I say [ba]”). The best token of
each syllable was used in the experiment, such that each syllable in
the study was represented with a single token (following the proce-
dure used by Buiatti et al., 2009; McNealy et al., 2006). The syllables
were recorded at 44 kH using a unidirectional microphone connected
to a professional amplifier, saved directly to disk using Sound Studio
3.5.4 (Felt Tip Software, NY, USA), edited offline using Wave Pad
Sound Editor 4.53 (NHC Software, Canberra, Australia) to have a
mean duration of 225 ms, and normalized for RMS intensity.

Non-speech stimuli
The non-speech stimuli were 70 unique bird sounds created from

the recordings of thirty seven (37) different birds (including raven,
parrot, duck, heron, falcon, and starling; see Supplementary material
S2 for the complete listing). We chose bird sounds because they form
a natural class of sounds, and because, like speech, they are acousti-
cally rich exhibiting a formant structure (see Supplementary material
S3 for an illustration of the bird sounds), and characterized by fast
modulations of spectral power over time. The bird stimuli were creat-
ed from a high quality digital collection of bird sounds recorded at
44 kHz, and commercially available on ITunes (The Ultimate Sound
Effects Collection: Birds; 2010 by HDsoundFX). All sounds were
edited using Wave Pad Sound Editor to have a mean duration of
225 ms and normalized for RMS intensity. 75% of the total energy
(power) contained in the bird sounds was contained between 1 and
5 kHz, with roughly equal contribution of each (1 kHz) frequency
bin (1–2 kHz, 2–3 kHz, 3–4 kHz and 4–5 kHz).

Spectro-temporal characteristics of the acoustic stimuli
In order to characterize the speech and non-speech sounds in

terms of their spectro-temporal characteristics, we computed the
spectral entropy of each sound, a measure that reflects the relative
complexity (entropy) of a sound's frequency spectrum on a scale of
0 to 1. To illustrate, contrary to speech, pure tones have a very focal
distribution of energy with a spectral entropy around 0. This may
account for observed speech vs. pure-tone difference found in prior
work (Benson et al., 2001). In contrast, more complex “noisy” or
broadband sounds (in which energy is evenly distributed across all
frequencies) have a higher entropy value around 1. For each sound
used in this experiment, spectral entropy was calculated using the
spectral entropy function of the Seewave R package (Sueur et al.,
2008). For both speech and non-speech, spectral entropy was high,
with a mean±SD spectral entropy of .70±.069 for speech, and a
mean entropy of .79±.076 for non-speech. For the speech sounds,
on average, over 99% of the total spectral energy was in the 0–2 kHz
frequency range. For the non-speech sounds, roughly 30% of the
total spectral energy was in this range, indicating that, though non
spectrally identical, there was significant overlap in the spectral com-
position of the speech and non-speech sounds. 83% of the total spectral
energy in the non-speech sounds was located between 0 and 5 kHz.
2 ([b, d, z, , , f, g, k, j, m, n, , l, , p, r, s, ∫, , , v, w, z]).
An example of a speech and a non-speech sequence (waveforms and
spectrograms) is provided as Supplementary material S3.
Construction of the sound sequences and formal validation of order
manipulation

The stimuli (speech, non-speech) were arranged in 126 unique se-
quences containing combinations of four different sounds (either four
syllables or four bird sounds, taken from the pool of 70 speech and 70
non-speech sounds) repeated ±8 times each according to transition
constraints as detailed below. Each sequence was 8.8 s long and
consisted of 32 sounds presented at a rate of 3.6 Hz, consistent with
normal speech production rate (Kent, 2000; Rosen, 1992). Sounds
within a sequence were separated by 50 ms of silence. To optimize
within-sequence syllable discriminability, each speech sequence in-
cluded syllables consisting of 4 different consonants and 4 different
vowels.3 The speech sequences were verified by a two native Italian
speakers to ensure that they did not contain meaningful syllable
combinations. To optimize discriminability for the non-speech sounds,
no two sounds from the same bird species were presented within a se-
quence. In order to ensure that the speech and non-speech sounds had
similar discriminability, a behavioral experiment was conducted which
is described in Section Behavioral auditory discrimination study.

The statistical structure (SS) of the sequences, which was deter-
mined by the TP matrices, was manipulated experimentally. The
sequences ranged from random to highly structured in 3 levels (low
SS, mid SS, and high SS), each associated with a different level of
Markov Entropy (ME). ME is a measure of unpredictability: the
more predictable a sequence is, the lower its ME value. TP matrices
are presented in Supplementary material S4. As can be seen in Table
S4a, in the low structure condition, each item was equally likely to
appear at any point independently of the previously presented item
(mean±SD entropy=1.84±.03; range: 1.8–1.94). It was therefore
impossible for the participants to form expectations. As shown Table
S4b and S4c, in the mid structure (mean±SD entropy=1.51±.018;
range 1.48–1.53) and high structure sequences (mean±SD entropy=
.79±.012; range .78–.81), the TP matrices were more constrained,
which allowed the participants to form expectations about upcoming
sounds. The overall proportion of self-repetitions (the diagonal of the
matrices presented in Table S2a) was set at 25%. This was done to
control for repetition suppression effects (Hasson et al., 2006).

To ensure that the speech sequences only differed in terms of
experimentally-determined TP (and not in terms of naturalistic,
Italian TP), we extracted from the itWaC corpus the mean TP for all
syllable combinations presented within our sequences for each condi-
tion (low, mid, and high statistical structure). The average Italian
within-sequence TPs P(syl1 | syl2) were low in all three conditions
(high structure=.00451±.01 SD; mid structure=.004562±.005
SD; random=.0056±.006 SD). Low TP indicates rarely occurring syl-
lables combinations, which was expected since we did not use words.
Importantly, they did not differ across conditions (p values for all 3
contrasts >.58). This experimental setup resulted in a 3×2 design
with Statistical Structure (3 levels) and auditory Category (2 levels)
as within-subject factors, for a total of 6 conditions and 126 experi-
mental trials. Two sequences were excluded from the analyses to
balance the number of self-repetitions across conditions, leaving
123 trials for each participant. The experimental trials were split
between 3 runs of approximately 10 min each.

To ensure that subjects could acquire the statistical features of the
mid and high structure sequences, and to determine the point
at which these sequences diverged in their relative departure from
randomness, a formal analysis of these sequences was conducted
that quantified the rate at which the transition structure of these
4 Note that the maximum entropy for 4-item sequences, i.e., the random case, is 2
and can only be achieved in very long series.
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sequences departed from the null (uniform, random) transition dis-
tribution through the progressions of each sequence. This was done
by implementing a moving window analysis on each sequence that
(a) determined the transition probability structure existing up to
each point in the sequence, and (b) quantified the degree to which
that transition structure diverged from what would be expected in a
random distribution, using the Kullback–Leibler (KL) divergence
measure (Kullback and Leibler, 1951). This analysis is described in
Supplementary material S5. Importantly, the results showed that, as
was expected, mid and highly structured sequences differed in
terms of their learning potential from a random distribution.

Presentation of the stimuli

Each sound sequencewas presented only once, through a high qual-
ity, digital passive noise-attenuation MRI-compatible stereo headset
(SereneSound, Resonance Technology Inc). Within each of the three
runs, 42 experimental trials, each 8.8 s (corresponding to the duration
of the sound sequences) were interleaved with 49 “jittered” short
silence (rest) intervals. These rest intervals had a mean duration of
4.2 s, and accounted for a total time of 206 s (per run). Within each
run, the order of the conditions and the number of rest trials were opti-
mized (randomized) using OPTseq2 (http://surfer.nmr.mgh.harvard.
edu/optseq/).

In-scanner behavioral task

Before beginning the experiment, the participants were introduced
to the syllables and birds sounds. This was done to avoid any surprise ef-
fect, as well as to familiarize the participants with the speaker's voice
and accent. Task instructions were pre-recorded by the same speaker
who recorded the stimuli and played back to all participants before
beginning the fMRI session. The participants were asked to passively
attend to the auditory sequences while monitoring a static polygon
shape presented on the screen via back projection. This visual monitor-
ing task required them to press a button on a response box each time the
polygon started rotating in a clockwise fashion (“catch trials”), which
ensured that the participants maintained vigilance but did not necessi-
tate attention to the auditory sequences or the SS manipulation. There
were a total of 24 catch trials, representing approximately 20% of all ex-
perimental trials. Responses to catch trials were taken into account in
the fMRI analyses (i.e. modeled as a regressor of no interest), but these
are not reported here as they have no theoretical relevance.

Post-scan behavioral task

At the end of the fMRI session, the participants were presented with
all 123 auditory sequences again andwere asked to rate their perceived
statistical structure using a 7-point scare, at self-paced rate.5 In addition,
in about 40% of all trials, they were also asked to indicate the number of
perceived sounds. The order of presentation of the six conditions was
fully randomized. This portion of the study took about 45 min.

Image acquisition

A 4 T 8-coil Bruker system was used to acquire high-resolution
anatomical and functional data for each participant. Structural scans
were acquired with a 3D T1-weighted MPRAGE sequence (TR/TE=
2700/4 ms, flip angle=7°, isotropic voxel size=1 mm3, matrix=
256×224; 176 sagittal slices). Two structural volumes were obtained
5 Participants were asked to judge the structure of the sequences, that is, how or-
dered or regular the sequences were. For instance, they were told that sequences
containing repeating, predictable patterns (the following example PA-TA-KA-PA-TA-
KA-PA-TA-KA was given) should be rated high (close to seven), and random,
unpredictable sequences should be rated low (close to zero).
for all but two participants and averaged to allowmore accurate image
processing. Single-shot EPI BOLD functional imageswere acquiredusing
the point-spread-function distortion correction method (Zaitsev et al.,
2004). Each functional EPI run began with six dummy scans to allow
the magnetization to stabilize to a steady state. Eight hundred and sev-
enty functional images were acquired across 3 runs for this experiment
(TR/TE=2200/33 ms, 37 interleaved slices parallel to AC/PC, voxel
size=3×3×3.45, gap=.2 mm; matrix=64×64; 1914 s of the scan
time).

Data analysis

Behavioral data analyses
Behavioral data was obtained in the post-scan stage as described

in Section Post-scan behavioral task. Two dependent behavioral
measures were obtained for each sequence — perceived statistical
structure and perceived numerosity (number of unique sounds).
Both measures were analyzed and compared for speech and non-
speech across all levels of statistical structure levels using a 2×3
repeated measure ANOVA with Category, and statistical structure as
the within-subject factors. Trend analyses were also conducted to
examine whether these measures changed as a function of increased
statistical structure. In addition to these analyses, we also examined
the relationship between perceived numerosity and perceived statis-
tical structure using a mediation analysis implemented using the
INDIRECT algorithm (Hayes, 2008; Preacher and Hayes, 2004).
Mediation analyses determine whether mediator variables affect the
relationship between a dependent (Y) and an independent (X) vari-
able, thereby serving to clarify the nature of the relationship between
independent and dependent variables. This analysis was used to test
(i) the potential causal relationship between auditory category (X)
and the perception of statistical structure (Y), and (ii) whether this
relationship is mediated by numerosity perception (M).

fMRI time-series analyses
All functional time-series were motion-corrected, time-shifted,

de-spiked and mean-normalized using AFNI (Cox, 1996). In addition,
we censored time points occurring during excessive motion, defined
as >1 mm (Johnstone et al., 2006). For each participant we first
regressed the mean, linear, and quadratic trend components as well
as the 6 motion parameters (x, y, z and roll, pitch and yaw) separately
for each experimental run. The resulting cleaned time-series were
projected onto the 2-dimensional surfaces where all subsequent pro-
cessing took place. For each participant, the anatomical images were
aligned to the functional volumes automatically (Saad et al., 2009)
and alignment was verified and manually adjusted when necessary.
A surface representation of the participant's anatomy was then
created using FreeSurfer (Dale et al., 1999; Fischl et al., 1999) by in-
flating each hemisphere of the anatomical volumes to a surface repre-
sentation and aligning it to a template of average curvature. SUMA
was used to import the surface representations into the AFNI 3D space
and to project the pre-processed time-series from the 3-dimensional
volumes onto the 2-dimensional surfaces. The time-series were
smoothed on the surface to achieve a target smoothing value of 6 mm
using a Gaussian full width half maximum (FWHM) filter. Smoothing
on the surface as opposed to the volume ensures that white matter
values are not included, and that functional data located in anatomically
distant locations on the cortical surface are not averaged across sulci
(Argall et al., 2006). For each participant, we created a set of 7 regres-
sors, one for each of the experimental condition and one for the catch
trials. A finite impulse response linear least squares model established
a fit to each time point of this hemodynamic response function (HRF)
for each of these conditions using AFNI's tent basis function. This
model-free deconvolution method allows the shape of the hemody-
namic response to vary for each condition rather than assuming a single
response profile for all conditions (Meltzer et al., 2008). The interval
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Table 1
Definition of the supratemporal regions of interest.

Region Short name Definition

Planum polare PP Unedited FreeSurfer ROI. PP is bounded medially by the circular sulcus of the insula, caudally by TTG, laterally by STG
and rostrally by the temporal pole.

Superior temporal gyrus STG The FreeSurfer STG ROI, which runs from the rostral edge of the STS to the supramarginal gyrus; it is bounded medially
by the lateral fissure; we manually divided this region into thirds of roughly the same size along a rostro-caudal axis.

Transverse temporal gyrus TTG The FreeSurfer TTG ROI, which is bounded rostrally by the rostral extent of the transverse temporal sulcus, caudally by
the caudal portion of the insular cortex, laterally by the superior temporal gyrus and medially by the lateral fissure,
was manually divided into halves of roughly the same size along a medial-lateral axis.

Transverse temporal sulcus TTS The FreeSurfer TTS ROI, located immediately anterior to PT and posterior to TTG, was manually divided into halves of roughly
the same size along a medial-lateral axis.

Planum temporale PT The FreeSurfer PT ROI, defined as the part of the superior temporal plane immediately posterior to the transverse temporal
sulcus, bounded medially by the Sylvian fissure, and posteriorly by the supramarginal gyrus; we manually divided this region
into three segments of roughly the same size along a rostro-caudal axis.

Caudal segment of the
Sylvian fissure

SF The Freesurfer posterior Sylvian fissure ROI runs from the lower end of the central sulcus to the end of the posterior ascending
ramus (Dahl et al., 2006). The FreeSurfer posterior SF ROI was manually subdivided into two segments (anterior, posterior)
of roughly the same size.

6 This correction was applied whenever the sphericity assumption was violated.
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that we modeled subsumed the entire trial duration (i.e. 8.8 s), begin-
ning at stimulus onset and continuing at 2.2-s intervals for 17.6 s. Typ-
ically, shorter intervals aremodeled in fMRI analyses, but in the present
study, it was necessary to cover a long interval to capture the BOLD sig-
nal associated with statistical information processing, which can only
emerge after several seconds of stimuli presentation, since statistical
features by definition develop over time (as shown in the formal
analysis, Section Construction of the sound sequences and formal
validation of order manipulation). All analyses (whole brain and ROIs)
focused on the 2.2 to 13.2 s interval that followed sequence onset.
The first time-point (0–2.2 s) was not included in the analysis because
sensitivity to statistics cannot emerge instantaneously. The last 2
time-points (13.2–17.6 s) were excluded because they corresponded
to the tail of the HRF and undershoot periods. An example of a typical
HRF is provided in Fig. 2.

Group-level voxel wise analyses
First, whole-brain group analyses were performed using SUMA on

the participants' beta values resulting from the first level analysis.
A 3-way repeated measure ANOVA was conducted with Category
(speech, non-speech), Statistical structure (low, mid, high) and Time
(starting at 2.2 s post-stimulus onset to 13.2 s in five steps) as the
within-subject factors. All group analyses were corrected for multiple
comparisons using a Monte Carlo simulation procedure on surface data,
which implements the cluster-size threshold procedure as a protection
against Type I error (Forman et al., 1995). The simulations determined
that a family-wise error (FWE) rate of pb .05 is achieved with a mini-
mum cluster size of 79 contiguous surface nodes (rmm 4 mm), with
each node significant at pb .001. From this analysis we also identified
areas sensitive to both speech and non-speech (speech ∩ non-speech.)
via a conjunction mask (Nichols et al., 2005) of brain activity from the
whole-brain contrasts (corrected for multiple comparisons).

Anatomical ROI analysis

Anatomical definitions for the ROIs. The core of the analyses focused
on characterizing the functional profiles of a set of 13 a priori selected
bilateral anatomical regions of interest (ROI) covering the supra-
temporal plane. ROIs were anatomically defined on each individual's
cortical surface representation using an automated parcellation
scheme (Desikan et al., 2006; Fischl et al., 2004). This procedure uses
a probabilistic labeling algorithm that incorporates the anatomical con-
ventions of Duvernoy (1991) and thus is based on macroanatomical
landmarks, not on cytoarchitectonic maps. The anatomical accuracy of
this method is high, approaching that of manual parcellation (Desikan
et al., 2006; Fischl et al., 2002, 2004). This initial parcellation was
augmented manually with further subdivisions to increase the spatial
resolution of the ROI analysis. The ROIs used in the current study
included: (1) planum polare (PP), (2) superior temporal gyrus (STG),
(3) transverse temporal gyrus (TTG), (4) transverse temporal sulcus
(TTS), (5) planum temporale (PT), and (6) caudal segment of the
Sylvian fissure (SF); these ROIs are described in Table 1 (see also
Supplementary material S6 for an illustration).

ROI-level statistical analyses. For each ROI and each participant, we
first extracted the estimated percentage of BOLD signal change (beta
weights) for each of the 6 conditions. This resulted in a per-participant
table of 6 (condition) by 5 (time-points) reflecting activity ranging
from 2.2 s post-stimulus onset to 13.2 s (exclusively) post stimulus
onset; all statistical analyses were conducted on these tables. For each
ROI we conducted a Greenhouse–Geisser corrected6 3-way ANOVA,
with repeatedmeasurements on Category (speech, non-speech), Statis-
tical structure (low, mid, and high), and Time (5 time points).

Thefirst step in the analysis involved examination of Category (C) ef-
fects collapsing over statistical structure, which provides a basic under-
standing of auditory Category preference in the supratemporal plane. To
this end, we identified ROIs showing an FDR-corrected (q=.05, i=13
per hemisphere) significant main effect of Category, as well as ROIs
showing a significant FDR-corrected Category×Time (CT) interaction.
Two kinds of response profiles can result in a main effect of Category.
The first, whichwe refer to as a relative advantage (or ‘preference’), cor-
responds to the case where a ROI is significantly active for both speech
and non-speech, with stronger activation magnitude for one category
over the other. The second response pattern, whichwe refer to as an ab-
solute preference, indicates that a ROI is significantly active for only one
category and further shows a stronger response to this category than the
other. To determine the type of response pattern driving category-
sensitivity in supratemporal ROIs, we examined, using a set of FDR-
corrected one-sample comparisons, whether activation level was signif-
icantly different from zero for each Category. For ROIs showing a
Category×Time (CT) interaction, this procedure was conducted on the
time-point showing the maximal effect of auditory category.

The second step in the analysis was to identify ROIs sensitive
to the statistical structure manipulation, and particularly, whether
sensitivity to statistical structure varied as function of Category
(speech vs. non-speech). Absence of modulation of Statistical struc-
ture by Category suggests general, category-independent processing.
In those regions that showed statistically significant Category×
Statistical structure (CSS) interaction (FDR corrected (q=.05, i=13
per hemisphere)), we examined the general response profiles for
the three SS levels (low, mid, and high), using a set of orthogonal
complex contrasts (trends) performed separately for the speech and
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Fig. 1. Results of the post scan behavioral task. Panel A illustrates the perception of
numerosity (number of unique sounds per sequence) as a function of Statistical Structure,
separately for the speech and non-speech sounds. Panel B shows the perception of struc-
ture (ratings on a scale of 1–7) as a function of actual Statistical Structure, separately for
the speech and non-speech sounds. The error bars represent the confidence intervals.
Panel C illustrates themediation analysis on the relationship of auditory category and per-
ception of Statistical Structure. The direct effect of X (Category) on Y (perceived Statistical
Structure), controlling for the effect of the mediator variable (perceived numerosity), is
represented in this graph by the c′ path. The a path represents the direct effect of the
causal variable on the mediator, while the b path represents the effect of the mediator
on the outcome variable. The indirect effect of X thoughM is given by the ab path; the sig-
nificance of the indirect effect is provided by bootstrapping confidence intervals. This
model tests whether Category affects the perception of statistical structure, and whether
that relationship is mediated by the perception of numerosity.
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the non-speech sequences (Rosenthal et al., 2000). Trend analyses es-
tablish the function that best characterizes the relationship between a
dependent variable (brain activity) and the levels of an independent
variable (SS). Here we examined two orthogonal trends, the linear
(1 0–1), and the quadratic trends (1–2 1). For ROIs showing a
3-way Category×SS×Time (CSST) interaction, the same trend analy-
sis was conducted, focusing on the time point exhibiting the maximal
SS effect within each auditory domain.

Behavioral auditory discrimination study

In order to ensure that the combinations of sounds (both speech
and non-speech) used in the main experiment were equally discrim-
inable, we conducted an independent behavioral auditory discrimina-
tion experiment (AX same/difference judgment for pairs of sound)
with a separate group of participants consisting of 11 native Italian
speakers (5 males; mean age: 24±9.5 years; education: 13.9±
1.97 years), all right-handed (Oldfield, 1971) with self-reported nor-
mal hearing. A total of 756 pairs of different sounds were created
using PRAAT (Boersma and Weenink, 2011), including 378 pairs of
bird sounds and 378 pairs of syllables. Each syllable-pair or bird-
sound-pair that was presented during the main experiment (fMRI)
was included in the behavioral study. In addition, 756 pairs of identi-
cal sounds (378 birds, 378 syllables) were included to control for
potential response biases and allow sensitivity calculations. To avoid
long testing sessions and associated fatigue effects, this material set
was split into two lists, and each participant presented with one of
those. A self-paced AX discrimination paradigm was used in which
pairs of sound were presented using PRAAT in a sound-attenuated
booth through high quality headphones. Sounds within a trial were
presented at the same rate used in the sequences in the main exper-
iment, that is, they were separated by 50 ms silence. Participants
performed same/different judgments by pressing on a computer
mouse button. Their responses were recorded using PRATT.

Results

Behavioral results

Behavioral auditory discrimination study
Accuracy (mean±SD) in the discrimination task approached ceil-

ing with 99.63±.64% correct responses for speech and 99.39±.89%
correct responses for non-speech pairs. Crucially, for both speech
and non-speech, participants almost never rated “different” pairs as
the same: the accuracy in these trials was 99.9% for speech, and
99.86% for non-speech, indicating that the differences observed in
processing speech vs. non-speech sequences in the main experiment
cannot be attributed to an intrinsic perceptual advantage for discrim-
inating speech over non-speech sounds.

In-scanner performance on auxiliary visual target detection task
Participants' performance on the visual monitoring task during

the fMRI study was highly accurate with 96.7% of correct responses,
indicating that participants were alert during the study. In total 15
mistakes over 456 trials were committed. One participant (#19)
failed to respond and was therefore excluded from the fMRI analyses.

Performance in the post-scan behavioral task
In the postscan behavioral study, participants were presented

again with all the sequences they heard during the fMRI study, and
were asked to rate the perceived regularity of each sequence (explicit
rating of statistical structure). In 40% of the sequences, they were also
asked to provide a rating of how many unique sounds were embed-
ded in the series they heard (“numerosity ratings”). Analyses of vari-
ance were performed on both these ratings.
Ratings of numerosity offer a unique insight into how participants
were able to segment the speech and non-speech sequences into
constituents. For these, a 2×2 ANOVA with Category (speech, non-
speech) and Statistical Structure (low, medium, high) revealed a sig-
nificant main effect of Category (F(1,19)=5.09, p=.036), a significant
main effect of statistical structure (F(2,38)=5.36, p=.009), and no in-
teraction (F(2,38)=.72, p=.49). Follow-up analyses were conducted
to interpret these effects. In general, participants' numerosity ratings
indicated that they were less successful in segmenting the
non-speech sequences. Collapsing over the level of statistical struc-
ture, numerosity evaluations were more accurate (closer to target,
i.e., 4) for speech than non-speech sequences (mean numerosity
score for speech=4.03±.26 items, not significantly different from
4; mean numerosity score for non-speech=3.87±.48 items, p=
.036, indicating significant difference from 4). When examining the
impact of objective statistical structure, we found that participants
perceived more unique sounds for more random sequences, resulting
in a main effect of statistical structure. A trend analysis revealed that
statistical regularities affected perceived numerosity, similarly for
speech and non-speech sequence, characterized by increased perception
of numerosity with greater randomness (for speech, linear: F(1,19)=
3.672, p=.07; quadratic: F (1,19)b1, p=.89; for non-Speech linear:
F(1,19)=6.78, p=.018; quadratic: F(1,19)b1, p=.88). That is, participants
tended to report more unique sounds when sequences were more
random. These findings are illustrated in Fig. 1A.

For the explicit ratings of statistical structure, we found strong
sensitivity to statistical structure (main effect of statistical structure
F(1,19)=60.8, pb .0001), which was modulated by Category, exhibiting
a significant statistical structure by Category interaction (F(1,19)=
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27.14, pb .0001). These results are illustrated in Fig. 1B. Importantly, the
trend analysis revealed similar response profiles for speech
and non-speech sequences characterized by an increase in perceived
statistical structure as a function of objective Markov Entropy level
(for the perception of statistical structure in speech: linear: F(1,19)=
63.77, pb .0001; quadratic: F(1,19)=39.69, pb .0001; for the perception
of statistical structure in non-speech: linear: F(1,19)=27.90, pb .0001;
quadratic: F(1,19)=7.67, p=.012).

In sum, the behavioral findings indicate that participants could
segment and evaluate the degree of within-sequence statistical regu-
larity for both speech and non-speech sequences, with greater seg-
mentation accuracy for speech. These results suggest a relationship
between perceived numerosity and perceived statistical structure.
To address this question, we conducted a mediation analysis to exam-
ine whether the relationship between Category and perceived statis-
tical structure was mediated by perceived numerosity. The results,
illustrated in Fig. 1C, reveal a significant relationship between catego-
ry and perceived numerosity (the a path in the figure), a direct effect
of perceived numerosity on perceived statistical structure (the b
path). Importantly, there was a significant indirect (mediated) effect
of Category on perceived statistical structure through perceived
numerosity (the ab path), which shows that increased sensitivity to
numerosity afforded by the speech signal lead to an apparent greater
sensitivity to statistical structure. The importance of this result is in
showing that the advantage of speech in terms of perceived structure
likely originates from an easier segmentation process.

fMRI results

The fMRI analysis consisted of several steps. First, we conducted a
whole-brain ANOVA that evaluated which brain regions were sensi-
tive to Category, statistical structure, or to the Category by statistical
structure interaction. This analysis also identified commonly and
A. Auditory category main effect
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Fig. 2. Whole-brain analysis of auditory category effects. Panel A shows the regions that sho
erage smoothed flattened lateral surfaces. All analyses are controlled for family-wise error (
trates the regions significantly active, at the group-level, for the contrasts of “speech greater
the conjunction of speech and non-speech (speech ∩ non-speech; black outline). Panel C illu
separately for speech (in purple) and non-speech (in turquoise). (For interpretation of the r
differently activated for speech and non-speech sequences. After
documenting these findings on the whole-brain level we focus on
the activity in subregions in the supratemporal plane.

Whole brain results
As shown in Fig. 2A, the 3-way ANOVA revealed that many bilateral

supratemporal regions showed a main effect of Category, including
the TTS, TTG and PT. The left ventral premotor cortex (PMv) in the
precentral gyrus was also modulated by Category. Many regions
showed a significant statistical structure by Time interaction (i.e., gen-
eral differentiation between levels of statistical structure independent
of time) consistent with our analysis (Section Construction of the
sound sequences and formal validation of order manipulation) of how
sensitivity to statistical structure develops over time (see Fig. 3A). Inter-
estingly, these regions also included relatively low-level auditory
regions, consisting of the TTG, TTS and PT bilaterally, as well as most
of the left STG. As shown in Fig. 3B, the two-way Category×statistical
structure interaction was significant in the left TTS and TTG. A list of
all reliable activations for the ANOVA results is presented in Table 1.

In addition to conducting a 3-way ANOVA, we also examined the
intersection of speech and non-speech sequence processing collaps-
ing across statistical structure. Fig. 2B reveals the brain areas jointly
activated during the presentation of both speech and non-speech
sequences contrasted against rest (black outline). As can be seen in
the figure, regions jointly active for both categories' sequences
consisted of the TTG, TTS and PT. A list of all reliable joint activations
is presented in Table 2. Also shown in Fig. 2B is the decomposition of
the Category main effects revealed by the ANOVA. Regions showing
stronger activation for speech compared to non-speech sequences
are shown in purple – these included the left PMv and the lateral
part of the supratemporal plane – those showing the opposite pattern
are shown in turquoise. These were limited to the insula bilaterally,
and most medial part of the supratemporal plane. The importance
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Fig. 3. Whole-brain analysis of sensitivity to Statistical Structure. The figure illustrates regions showing a statistically significant, Statistical Structure×Time interactions (panel A)
and Statistical Structure×Category×Time interactions (panel B). Results are shown on the group average smoothed flattened lateral surfaces. Pale gray denotes a gyri and dark gray
denotes sulci. R = right hemisphere. Analysis controlled for family-wise error (pb .05) using cluster-level extent and a single voxel threshold of pb .005).
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of the whole-brain analysis is in validating our basic finding against
the prior literature; the detailed ROI analysis presented below offers
a more accurate evaluation of these findings in that the ROIs were de-
termined on the basis of each participant's own anatomy hence con-
clusions do not rely on successful registration to common space
across participants as do whole-brain analyses.
Supra-temporal ROI analyses
The ROI analysis consisted of a series of 2 (Category)×3 (Statisti-

cal Structure) ×5 (Time in hemodynamic response function) ANOVA.
Table 2
FWE-corrected group-level (N=19), cortical surface results for: A. Input domain, B. input b
coordinates are in Talairach space and represent the centroid surface node for each of the clu

Condition Anatomical location

A. Input domain TTG, extending caudally into TTS and PT, medially into the SF,
insula and subcentral gyrus, and laterally covering most of the S
Ventral premotor cortex in the precentral gyrus.
Insula, extending laterally into SF and PT and anterior STG and S

B. Input by Time TTG, extending caudally into TTS and PT, medially into the SF, in
and laterally covering most of the STG.
Subcentral gyrus and sulcus.
Insula, extending laterally into SF and PT, TTS and TTG, and mos
of the STG and STS.
Superior frontal gyrus.

C. Input by Structure Planum temporale and STS.
Ventral central sulcus.

D. Structure by Time TTS extending rostrally into TTG and caudally into PT. The clust
also extends medially into the SF, insula, and laterally into the
posterior STG and supramarginal gyrus.
Cingulate gyrus, extending into the SMA-proper.
Dorsal precentral gyrus, extending into the dorsal central sulcus
TTS extending rostrally into TTG and caudally into PT.
Cingulate gyrus, extending into the SMA-proper.
Posterior STG/STS
Supramarginal gyrus.

E. Input by Structure
by Time

TTS extending rostrally into TTG and caudally into PT, and latera
into the posterior STG.
TTG, extending caudally into TTS.
These were conducted separately for each region, and their results are
decomposed in the following paragraphs.
Sensitivity to auditory category.We began by identifying supratemporal
regions where activity varied as a function of Category (speech vs.
non-speech), as indicated by a statistically significant main effect of
Category (C) in the ANOVA or as a reliable Category×Time interaction
(CT) (FDR-corrected (q=.05, i=13)). As shown in Fig. 4, all but three
supratemporal regions were sensitive to Category. Next, we deter-
mined the type of response driving the effect (as detailed in
y time, C. input by structure and D. Structure by time, E. Input by structure by time. All
ster (minimum cluster size: 168 contiguous surface nodes, each significant at pb .005).

Hemi x Y z Max
p value

Z Number
of nodes

Max
F value

TG.
Left −61 −15 2 b .0001 3.7 8015 115.5

Left −51 −8 46 .0002 3.5 972 22.8
TS Right 40 −25 2 b .0001 3.7 9328 82.5
sula, Left −59 −9 −2 b .0001 3.7 11,347 47.2

Left −59 −12 13 b .0001 3.7 790 12.8
t Right 44 −21 −1 b .0001 3.7 10,663 32.5

Right 12 24 54 .0004 3.4 628 9.9
Left −51 −30 5 .0002 3.5 478 1.9
Left −40 −22 38 .0006 3.2 507 9.3

er Left −49 −20 3 .0026 2.8 4639 7.1

Left −11 −5 41 .0154 2.2 1275 4.8
. Right 21 −20 66 .0047 2.6 2055 6.3

Right 56 −14 1 .0023 2.8 1324 7.2
Right 5 −2 40 .0131 2.2 1115 4.9
Right 59 −31 4 .0008 3.2 786 8.8
Right 47 −27 24 .0192 2.1 851 4.4

lly Left −52 −18 3 .0015 3.0 1997 7.9

Right 50 −16 5 .0051 2.6 993 6.1



Fig. 4. Patterns of auditory category preference in bilateral supratemporal ROIs. This anal-
ysis identified auditory preference independent of sensitivity to statistical structure. Five
patterns are color-coded and mapped onto a flattened schematic representation of the
left and right supratemporal planeshowing the parcellation used in this study (different
areas shownnot to scale). ROI legend (see also text formore details): PP=planumpolare;
TTG = transverse temporal gyrus (m = medial, l = lateral); TTS = transverse temporal
sulcus (m = medial, l = lateral); PT = planum temporale (a = anterior, m = middle,
p = posterior); SF= caudal sylvian fissure (a= anterior, p = posterior); STG= superior
temporal gyrus (a = anterior, m = middle, p = posterior). (For interpretation of the
references to color in this figure legend, the reader is referred to the web of this article.)

Fig. 5. Patterns of statistical structure effects in bilateral supratemporal ROIs. Four re-
sponse patterns are color-coded and mapped onto a flattened schematic representa-
tion of the left and right supratemporal plane showing the parcellation used in this
study (different areas shown not to scale).
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Section ROI-level statistical analyses). Left supratemporal ROIs with a
relative advantage for speech included the bilateral lateral TTG, the
bilateral lateral TTS, the anterior and themid PT, as well as the right an-
terior and posterior STG. ROIs with an absolute advantage for speech
included the left medial TTG, the left medial TTS, the left anterior, mid-
dle and posterior STG, the right middle STG, and the posterior SF. Re-
gions showing a relative advantage for the non-speech sounds
included the left anterior SF, right medial TTG, right anterior and mid
PT, and the right posterior SF. The bilateral posterior PT was the only
ROI showing an absolute preference for non-speech. ROI findings are
detailed in Table 3. The right medial TTS and the bilateral PP exhibited
no category preference. To determine whether this lack of effect was
driven by activation of similar magnitude for both categories, or by
the absence of significant activity for either category, we conducted a
set of additional one-sample t-tests against 0 (FDR corrected (q=.05,
i=6)). While activation in the right TTSm was significant for both
(Speech: t (18df)=7.15, p=.008; Bird: t (18df)=7.9, p=.016), for bilat-
eral PP it was not significant for either Category.

Category independent sensitivity to statistical structure. In total, 13 of 26
supratemporal ROIs were sensitive to statistical structure, either in a
Table 3
Group-level (N=19), cortical surface results for intersection of the speech and
non-speech sequences. All coordinates are in Talairach space and represent the cen-
troid surface node for each of the cluster (Family-wise corrected using cluster extent
with minimum cluster size: 79 contiguous surface nodes, each significant at pb .001).

Anatomical location Hemisphere x y z Number
of nodes

TTG, extending caudally into the
TTS and PT, and medially into SF.

Left −41 −28 8 5014

Subcentral gyrus −48 −17 16 322
TTG, extending caudally into the
TTS, PT, and STG, medially into
SF, and rostrally into PP.

Right 51 −25 6 3785
category-independent or a category-specific manner. The different sen-
sitivity profiles are summarized in Fig. 5. As can be seen in thefigure, the
5 ROIs that responded to statistical structure independently of category
were located mainly in posterior supratemporal plane, extending into
medial TTG. The other 8 ROIs showed differential sensitivity to statisti-
cal structure as function of Category (Table 4).

In the 5 regions that exhibited a reliable statistical structure by Time
interaction (SST) – the simplest manifestation of sensitivity to statistical
structure expected – different levels of statistical structure were associat-
ed with different shapes of hemodynamic responses. To characterize the
impact of statistical structure, we collapsed the data across the two audi-
tory categories and identified the time point at which the BOLD signal
showed the maximally differentiated response for each level of statistical
structure. To this aim, we first computed the difference between the
three SS levels at each time point in the HRF and then we identified
the time-point at which this difference was the greatest. After identifying
this time point, a trend analysis was conducted to describe the relation
between the three SS levels. As can be seen in Supplementary material
S7, the response profiles in all ROIs were shaped as an upright quadratic
(“V-shaped”) function, showing minimum activation for the mid-
structured sequences.

As reported in our analysis of category sensitivity (Section Sensitivity
to auditory category above), all five ROIs exhibited a statistically signifi-
cant preference for one category or the other. It is therefore interesting
to note that despite such preference, these regions' sensitivity to statis-
tical structure was independent of Category, suggesting that auditory
category preferencemay not be a strong indicator of scope of processing.

Category-specific sensitivity to statistical structure. In approximately
62% of all supratemporal ROIs that were sensitive statistical structure,
sensitivity to statistics was contingent upon Category. This was statis-
tically indicated by a 2-way interaction (Category×statistical struc-
ture; CSS interaction below), or by a 3-way interaction (Category×
Statistical Structure×Time; CSST interaction below). ROIs showing a
reliable CSS interaction were limited to bilateral TTSm and the right
TTGm (see Supplementary material S8). Both regions showed sensi-
tivity to statistical structure in non-speech stimuli only (a quadratic
trend). Interestingly, as described in our analysis of category prefer-
ence (Section Sensitivity to auditory category), both regions showed



Table 4
Summary of the ROI corrected ANOVA results.

# ROI Hemisphere Category effect
(df=1,18)

Category×Time
(df=4,72)

Specialization SS SS×Time
(df=8,144)

Category×SS
(df=2,36)

Category×SS×Time
(df=8,144)

Category Degree of specialization p Applicability p Applicability

1 Lateral TTG Left .0003 n.s. Speech Relative n.s. n.s. n.s. N/A .002 Both
2 Medial TTG Left n.s. .002 Speech Absolute n.s. .002 n.s. N/A n.s. N/A
3 Lateral TTS Left .00001 n.s. Speech Relative n.s. n.s. n.s. N/A .0004 Both
4 Medial TTS Left n.s. .0005 Speech Absolute n.s. n.s. .001 Non-speech n.s. N/A
5 Anterior PT Left .003 n.s. Speech Relative n.s. .006 n.s. N/A n.s. N/A
6 Mid PT Left n.s. .0000000001 Speech Relative n.s. .021 n.s. N/A n.s. N/A
7 Posterior PT Left n.s. .038 Non-speech Absolute n.s. n.s. n.s. N/A n.s. N/A
8 Anterior SF Left .005 n.s. Non-speech Relative n.s. n.s. n.s. N/A n.s. N/A
9 Posterior SF Left n.s. .0002 Speech Absolute n.s. .034 n.s. N/A n.s. N/A
10 Anterior STG Left .0001 n.s. Speech Absolute n.s. n.s. n.s. N/A n.s. N/A
11 Middle STG Left .0000000004 n.s. Speech Absolute n.s. n.s. n.s. N/A .014 Both
12 Posterior STG Left .000002 n.s. Speech Absolute n.s. .007 n.s. N/A n.s. N/A
13 PP Left n.s. n.s. N/A N/A n.s. n.s. n.s. N/A n.s. N/A
14 Lateral TTG Right .007 n.s. Speech Relative n.s. n.s. n.s. N/A .002 Both
15 Medial TTG Right n.s. .002 Non-Speech Relative n.s. n.s. .005 Non-speech n.s. N/A
16 Lateral TTS Right .006 n.s. Speech Relative n.s. n.s. n.s. N/A .0001 Both
17 Medial TTS Right n.s. n.s. N/A N/A n.s. n.s. .001 Non-speech n.s. N/A
18 Anterior PT Right n.s. .002 Non-Speech Relative n.s. n.s. n.s. N/A n.s. N/A
19 Mid PT Right n.s. .0003 Non-Speech Relative n.s. n.s. n.s. N/A n.s. N/A
20 Posterior PT Right .003 n.s. Non-Speech Absolute n.s. n.s. n.s. N/A n.s. N/A
21 Anterior SF Right .00003 n.s. Speech Relative n.s. n.s. n.s. N/A n.s. N/A
22 Posterior SF Right .0001 .00001 Non-Speech Relative n.s. n.s. n.s. N/A n.s. N/A
23 Anterior STG Right .013 n.s. Speech Relative n.s. n.s. n.s. N/A n.s. N/A
24 Middle STG Right .00001 n.s. Speech Absolute n.s. n.s. n.s. N/A n.s. N/A
25 Posterior STG Right .003 n.s. Speech Relative n.s. n.s. n.s. N/A n.s. N/A
26 PP Right n.s. n.s. N/A N/A n.s. n.s. n.s. N/A n.s. N/A
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strong responses to both speech and non-speech stimuli, and thus the
finding of sensitivity to statistics for non-speech stimuli only indicates
a that statistical processing was implemented solely for non-speech in-
puts. As we mention in the Discussion, this process may be related to
the enhanced segmentation requirements for less familiar stimuli.

For the other ROIs sensitive to statistical structure, sensitivity was
marked by a more complex response patterns characterized by a
reliable three-way CSST interaction (FDR-corrected). This interaction
indicates that the BOLD responses to statistical structure in the
speech and non-speech sequences were differently shaped across
time-points. Specifically, for each category, we identified the HRF
time-point of maximal difference between levels of statistical struc-
ture (as described in Section ROI-level statistical analyses). Fig. 6
shows response patterns at these time-points. As shown in the figure,
these regions included the bilateral lateral TTG and lateral TTS,
and the left middle STG. Interestingly, for speech, sensitivity for
statistical structure occurred early on, within 4 of sequence onset (a
timing that is consistent with our KL-divergence analysis described
in Section Construction of the sound sequences and formal
validation of order manipulation), while for non-speech maximal
differentiation between SS levels was found at about 10 s post se-
quence onset, that is, few seconds after the end of the sequences.
Moreover, while sensitivity to statistical structure in speech was
primarily shaped as an inverted quadratic function with maximal
activation for the mid-structured sequences, sensitivity to statistical
structure in non-speech had the reversed shape (V-shaped), indicat-
ing higher activity for high and low levels of predictability.

Linear responses to statistical structurewere found in only twoROIs:
the right lateral TTS and the left lateral TTG. In the former, sensitivity to
statistical structure was found for speech only, with increased activity
for greater randomness. In the left lateral TTG, a similar linear pattern
was found for both speech and non-speech sequences.

Discussion

Prior work examining sensitivity to statistical structure in speech in-
puts (McNealy et al., 2006) has shown that parts of the supratemporal
plane are sensitive to random vs. deterministic (structured) speech
inputs, with stronger BOLD response for the former. Overath et al.
(2007) found that bilateral PT is sensitive to statistical structure in
tone sequences. However, whether these statistical processes are
employed in a similar manner for different kinds of auditory input
had not been examined. The present study addressed this issue, identi-
fying supratemporal regions sensitive to statistical structure as a func-
tion of, or independently from, auditory category. The present study
also contributes to the understanding of the neurobiology of the
supratemporal plane in showing that different subregions of this area
exhibit markedly different profiles to statistical structure.

In contrast to prior work, we examined the neural mechanisms
underlying the ability to process statistical structure, operationalized
as the neural sensitivity to transition probability (TP) structure in se-
quences of speech and non-speech sounds that were presented in the
context of an incidental visual task. Such dual-task contexts are
known to be the most demanding in terms of sensitivity to statistical
structure in auditory inputs; it has been claimed that in absence of
explicit attention to auditory inputs such sensitivity is weak if present
at all (Bekinschtein et al., 2009; Kimura et al., 2010). Our results
challenge these previous results by revealing strong sensitivity to TP
in the supratemporal plane even when participants were not focusing
on auditory stimuli.

Importantly, posterior supratemporal regions were particularly
sensitive to statistical structure. We expected that some regions
would track statistics in a category-independent manner reflecting
domain general mechanisms. This pattern was indeed identified, but
in a relatively restricted set of posterior left supratemporal regions.
We also expected that speech would offer a significant advantage in
the processing of statistics resulting in a lower response magnitude
or a more focalized activation pattern. And indeed, we identified a few
supratemporal areas in which sensitivity to statistical structure was
restricted to non-speech sounds even though these areas responded
strongly to both sound categories. Given the behavioral findings, we
interpret this pattern as reflecting reduced segmentation demands for
more familiar speech sounds (Section Domain-general processing of
statistical structure in lateral transverse temporal areas) rather than a
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process mediating statistical coding per se. Finally, an unexpected but
important finding was that category preference, defined in terms of
increased activationmagnitude for one stimulus category over another,
was not a reliable predictor of whether a region tracks statistical struc-
ture in the given category (Section Segmentation in medial transverse
temporal areas). On this issue, we identified (1) regions that responded
strongly to both speech and non-speech categories but yet tracked
statistical structure in only one category, and (2) regions who tracked
statistics in a way that is independent of category yet exhibited a clear
preference for one category over the other in terms of response magni-
tude. To summarize, our findings indicate that supratemporal cortex
is highly sensitive to statistical structure in auditory inputs.More specif-
ically, some regions are sensitive to statistics in a general manner,
whereas others show category-based differences in the tracking of
statistics.

Sensitivity to auditory category vs. acoustics

In the current work we contrasted speech to another kind of nat-
ural sounds (bird sounds). For this reason, the two categories were
not completely matched acoustically, which imposes several poten-
tial interpretive limitations. First, when quantifying overall BOLD
responses, it is possible that any or all response differences between
speech and non-speech stimuli derive from differences in acoustic
patterns rather than speech category per se. Thus, what we term
‘speech preference’ could be related to differential sensitivity to any
of several acoustic features known to be encoded in the supra-
temporal plane, such as pitch, degree of variation of spectral centroid,
median harmonicity, and the degree to which loudness changes
over time (see for example Giordano et al., In press; Leaver and
Rauschecker, 2010). Second, we are inclined to follow prior work in
interpreting sensitivity to statistical structure in speech sequences
in terms of sensitivity to constraints governing speech-level syllable
or phoneme transitions (i.e., speech-code statistics; McNealy et al.,
2006; Buiatti et al., 2009). However, it is, in principle, possible that
the apparent sensitivity to statistics within speech sequences, as
found here and in prior work, reflects the tracking of low-level
sub-phonemic (acoustic) features, or a combination of phonemic
and sub-phonemic tracking in anatomically distinct areas. For in-
stance our results could indicate sensitivity to transition probabilities
that exist between formant patterns rather than, or in addition to,
transitions between speech-level units such as phonemes or syllables.
Because it is impossible to determine which stimuli features were
driving the effects for speech, the possibility of sensitivity to acousti-
cal features (i.e. a ‘low-level’ account) cannot be completely ruled out.
However, when considering the pattern of our behavioral results,
fMRI results, and prior work as a whole, we would argue that it is
more likely that differences in statistical sensitivity patterns that
were found for speech and non-speech sequences are not reducible
to acoustical differences. Our behavioral data revealed different
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segmentation patterns for speech vs. non-speech stimuli, corroborat-
ing prior work (Marcus et al., 2007) that identified an advantage for
extracting simple statistical patterns from sequences of speech vs.
non-speech sounds. It is very likely that the neural cost of segmenta-
tion varies for speech and non-speech sounds, with greater resources
being allocated for processing less familiar sounds. This account
parsimoniously explains why certain regions in the current study
showed different BOLD profiles to statistical structure as function of
category. In contrast, a ‘low-level’ account holds that one is tracking
acoustical patterns, and in the absence of several linking hypotheses
going beyond acoustics per se, would find it difficult to explain why
the relation between BOLD activity and statistical regularity showed
one pattern for speech sounds but another pattern for non-speech
sounds in regions strongly responsive to both auditory categories.

Nonetheless, the low-level account could explain one important
pattern: the specific case where a certain region tracked statistical
structure for the sound category it responded to more strongly, but
did not track statistical structure for the sound category it responded
to more weakly. This interaction pattern could indicate a floor-
response for the latter category. In practice, however, this pattern
never occurred in our data. Specifically, 7 of the 8 regions that showed
different responses to statistical structure as a function of category
responded strongly to both sound categories at the point of maximal
differentiation (see Fig. 6 and Supplementary material S8). A minor
exception was the middle part of left STG: that region tracked statis-
tical structure for both categories, but its activity was low for the
non-speech sounds. In sum, all ROIs showing category-dependent
sensitivity to statistical structure were sensitive to statistical struc-
ture in both categories.

Anterior to posterior supratemporal plane: from speech decoding to the
processing of statistical structure

Anterior supratemporal plane
Our findings suggest that anterior supratemporal regions are

involved in decoding speech independent of larger-scale statistical
structure, while posterior supratemporal areas are involved in pro-
cessing speech and non-speech sounds over time as revealed by
their sensitivity to statistical structure. The anterior supratemporal
plane, including anterior STG and PP, exhibited the simplest response
profiles. While the anterior STG showed preference for speech bilater-
ally, the bilateral PP, in contrast, was not significantly active in any
condition. Importantly, these regions did not show any sensitivity to
statistical structure. The preference for speech, combined with lack
of sensitivity to statistics tentatively suggests these regions operate
at the level of single speech units. This interpretation is consistent
with prior findings linking the anterior STG/STS area to speech and
voice processing in both human (Hickok and Poeppel, 2000;
Rauschecker and Scott, 2009) and non-human primates (Petkov
et al., 2008, 2009; Rauschecker and Tian, 2000; Tian et al., 2001),
through the ventral auditory ‘what’ pathway. The lack of activation
in PP, bilaterally, may be related to the fact that participants were
presented with only one speaker, hence only one voice, with which
they were familiarized before the beginning of the experiment. It fol-
lows from this that the contribution of any potential voice processing/
recognition/normalization mechanisms was likely minimized, which
may explain the lack of activation in PP.

Posterior supratemporal plane
In contrast to the anterior supratemporal areas, several posterior

supratemporal areas exhibited sensitivity to statistical structure. To
preface the discussion, we found an absolute preference for speech
in the middle and posterior segments of the left STG as well as in
the middle part of the right STG. However, responses to statistical
structure in these regions did not parallel this preference pattern.
Specifically, activation in the left middle and posterior STG tracked
statistics in both speech and non-speech with some regions showing
the same response pattern to statistical structure in both domains.
Particularly noteworthy is the fact that the left posterior STG
does not distinguish between auditory categories in its response to
variations in statistical structure. These findings are consistent with
previous fMRI, near-infrared spectroscopy (NIRS) and MEG studies
showing modulation of activation in posterior temporal areas con-
tingent upon the presence of statistical information in streams of
non-speech sounds (Abla and Okanoya, 2008; Furl et al., 2011;
Overath et al., 2007) and even visual sequences (Bischoff-Grethe
et al., 2000).

The left PT was also sensitive to statistical structure, but anterior/
medial responses differed from those found in posterior PT. These
findings corroborate prior findings of multiple functional areas in
the PT/SF complex (Fullerton and Pandya, 2007; Galaburda and
Sanides, 1980; Rivier and Clarke, 1997; Scheich et al., 1998; Sweet
et al., 2005; Tardif and Clarke, 2001; von Economo and Horn, 1930).
This finding is consistent with a recent fMRI study that identified
three non-overlapping regions in the bilateral human PT, each with
a distinct response to speech (Tremblay et al., in press). We found
sensitivity to statistical structure for both speech and non-speech in
the left PT, but the right PT did not track statistics at all. Our findings
are consistent with those of Overath et al. (2007) that found sensitiv-
ity to statistical structure of tone sequences in PT. However, they
identified sensitivity in PT bilaterally (the difference in findings
could be due to lack of control for multiple comparisons in the latter
study).

On the basis of our findings and those of Overath et al. we propose
that the left anterior and middle PT are involved in constructing
predictions of what is likely to be presented next. In the present
experiment, such predictive coding may have entailed building a rep-
resentation of auditory sequence structure (e.g. sound pairs with high
TP, etc.) and testing incoming sounds against the predicted ones. Such
mechanisms can be used to detect inconsistencies, particularly in
the highly predictable sequences, resulting in online adjustment of
transient internal representations and error signals generation. This
interpretation would be compatible with the computational hub
hypothesis (Griffiths and Warren, 2002), according to which the left
PT disambiguates complex sounds by matching their temporal and
spectral characteristics to stored templates (Griffiths and Warren,
2002). The matching process may operate at multiple levels, compar-
ing single sounds to templates but also complex sound streams (pairs,
triplets, etc. of sounds) against internal representations. This hypoth-
esis is consistent with prior findings, which demonstrated that PT
responds to the presentation of unexpected events in auditory
sequences, suggesting that PT is sensitive to the structure of sound
sequences (Mustovic et al., 2003). In sum, our findings extend prior
work that had identified sensitivity to statistical structure or surprise
effects in PT, and shows that left PT mediates what are likely
domain-general processing of statistical structure.

Domain-general processing of statistical structure in lateral transverse
temporal areas

The most complex functional response patterns (3-way interac-
tions) were found in lateral parts of the TTG and TTS bilaterally and
left middle STG. While these areas showed relative preference for
speech, they tracked statistics in both speech and non-speech sounds.
However, sensitivity to statistical structure was manifested as distinct
response profiles for speech and non-speech sequences. These results
suggest that non-primary supratemporal areas houses powerful
neural circuits capable of extracting and using complex statistical in-
formation. As shown by our analysis of the HRF profiles, these neural
circuits appeared to process statistics more quickly (and perhaps
more easily) from sequences of familiar sounds such as speech than
from sequences of less familiar sounds, not because of preference
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for speech per se, but possibly because of greater familiarity with
speech than any other sounds. This may explain the recent finding
that children are able to detect regularities such as ABB and ABA pat-
terns in speech sequences, but not in auditory non-speech sequences
consisting of tones, timbres, or animal call (Marcus et al., 2007).

Segmentation in medial transverse temporal areas

The bilateral medial TTS and the right medial TTG, which form the
bulk of the bilateral primary auditory area (PAC), responded strongly
to both speech and non-speech, yet tracked statistical structure only
in the non-speech sequences. On the basis of this result, we suggest
that these regions play an important role not in the processing of
statistical structure per se or the representation of uncertainty, but
in the segmentation of an input stream into units, which is a pre-
cursor to computation of statistics. In our study, both the speech
and non-speech sequences had the same duration (225 ms) and
were presented at the rate of 3.6 Hz, suggesting that both could be
successfully encoded by the auditory system, which is thought to
implement a 200-ms temporal integration window (Näätänen,
1992; Yabe et al., 1997, 1998). Still, the speech sounds enjoyed a
special advantage: since the units forming the speech sequences
were frequent Italian syllables, they were extremely well known to
participants. In contrast, for the non-speech sequences, the units
(the bird sounds) were unknown to the participants, and conse-
quently, any functional process that makes uses of statistical informa-
tion (e.g., for prediction) would first need to segment the units from
the continuous input prior to establishing the statistical properties
of the sequences. Processing less familiar sounds such as bird sounds,
but also non-native languages, sequences of environmental sounds or
other animal calls, may therefore be more demanding in terms of seg-
mentation in the context of statistical information processing, which
may result in increased activation magnitude or in the recruitment
of additional brain areas. Because segmentation is tightly linked to
statistical structure, statistics can only be computed on the basis of
an a-priori internal representation of the unique elements present
in a signal that has been established through segmentation. This
idea is supported by our behavioral results: participants perceived
fewer elements in the non-speech sequences and they also differed
in their ability to rate SS across categories, being more accurate for
speech than non-speech. Moreover, a mediation analysis showed
that the relationship between Category and perceived regularity
(ratings of sequence structure on a 7-point scale) is mediated by
perceived number of elements. These findings converge to suggest
that segmentation of the non-speech sounds was more laborious.

Our finding of complex response patterns in the human PAC
(i.e. responses going beyond category representation) is consistent
with recent findings of higher level processing in this region
(Kilian-Hutten et al., 2011; Riecke et al., 2007; Staeren et al., 2009).
For instance, Kilian-Hutten et al. (2011) recently showed that the
posterior bank of TTG is involved in the disambiguation of speech
sounds based on perceptual interpretations. In keeping with these
previous results, the current results suggest that PAC, bilaterally, is
involved in segmenting streams of sounds, a function that goes
beyond category representation.

Category vs. process specialization in the supratemporal plane

Perhaps the most unexpected finding of the present study is that
auditory preference was not a reliable indicator of the domain of ap-
plicability of statistical information processing. In the left medial TTG,
left anterior and mid PT, and left posterior STG, for example, despite
preference for speech, we found sensitivity to statistics in both cate-
gories. These findings have important implications for models of
speech perception, which often focus on, or operationalize, “speech-
related processes” by contrasting speech to non-speech stimuli and
interpreting increased BOLD activity for speech in a particular region
as reflecting the implementation of high-level speech-specific pro-
cesses. Our results advise against this logic. Stronger responses to
specific auditory categories may reflect familiarity, which may trigger
‘expert-like’ categorization processes not involved in processing unfa-
miliar sounds, as suggested by others (Mettler, 1932) but should not
be taken as evidence of domain-specific neurocomputations. It is in
this light that we interpret the findings that 1) some regions showed
sensitivity to statistics in non-speech sounds but not for speech
sounds, and 2) speech sequences were associated with more accurate
segmentation. Both these indicate that there may be an advantage for
processing statistical information for speech stimuli, which is not
the product of dedicated neural resources or ‘modules’, but rather
emerges from distinct neural computations within shared cortical
substrates, a hypothesis previously suggested by others (Price et al.,
2005).

Conclusions

The study of speech perception has been concerned to a large
extent with the neurocomputations associated single syllables and
phonemes, leaving processes specifically associated with the integra-
tion of information over large streams of sounds largely unexplored
(but see McNealy et al., 2006 for an exception). The present finding
of reliable, widespread sensitivity to statistical structure in several
parts of the supratemporal plane, in a study where participants per-
formed an unrelated visual task, suggests that statistical information
processing is a spontaneously occurring and obligatory part of audito-
ry sequence perception, even when not essential for overt behavior.
By going beyond the processing of single stimuli, our findings demon-
strate that posterior supratemporal were sensitive to the statistical
structure of preferred (speech) as well as non-preferred auditory in-
puts (following Overath et al., 2007). As such, the results highlight
the potential benefits of using measures beyond category preference
to better understand the nature of the neural mechanisms imple-
mented in the supratemporal cortex. Finally, the observed differences
in regional activation patterns in the supratemporal plane, which pre-
sumably reflect activation in different populations of neurons, show
the considerable heterogeneity of processing in this region and indi-
cate the importance of examining supratemporal activation patterns
at the highest possible anatomical resolution (for similar findings,
see Obleser et al., 2010; Petkov et al., 2004). Further studies are need-
ed to examine how the current findings generalize to other modali-
ties (e.g. visual), other types of sounds, in particular, naturalistic
complex sounds (computer sounds, sounds of cars, natural elements
such as thunder, etc.) and more complex situations, such as process-
ing speech sounds from multiple talkers. It will also be necessary to
examine how other parts of the functional speech perception
network such as the STS, inferior frontal gyrus and ventral premotor
cortex, regions known to be involved in the processing of speech, re-
sponds to statistical structure and how they interact with parts of the
supratemporal plane that are sensitive to this information.

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.neuroimage.2012.10.055.
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