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ABSTRACT

In this review, we briefly highlight potential cross-system inter-
actions between swallowing and speech production, using data from recent
neuroimaging studies, common clinical impairments, cross-system treat-
ment effects, and developmental considerations as supporting evidence. Our
overall hypothesis is that speech and swallowing (and other motor behav-
iors) are regulated through a shared network of brain regions and other
neural processes that are modulated on the basis of specific task demands.
We emphasize the clinical utility of viewing speech and swallowing as being
closely linked from both a diagnostic and treatment perspective. We stress
the importance of continuing research to explore the common and perhaps
distinct neural circuitry underlying speech and swallowing and the clinical
intervention strategies that attempt to capitalize on potential cross-system
therapeutic benefits.
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Learning Outcomes: As a result of this activity, the reader will be able to (1) describe the complexity of the

swallowing control processes, the relationship to speech production, and the common neural control mechan-

isms underlying both behaviors; and (2) explain the potential clinical importance of viewing swallowing and speech

(and other motor behaviors) as closely linked from a diagnostic and treatment perspective.

Swallowing is an extremely complex sen-
sorimotor behavior involving coordinated ac-
tivity in a vast array of muscles distributed
across several physiological systems including
the respiratory, laryngeal (phonatory), and mas-

ticatory (oral-articulatory) systems. Multiple
neural control elements regulate this complex
dynamic including central pattern generating
circuitry, sensory feedback, and other subcort-
ical and cortical control processes. Masticatory,
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respiratory, and laryngeal systems also partic-
ipate in speech production, and speech and
swallowing share some if not much of their
neural control elements. It is not surprising,
therefore, that disease and damage may simul-
taneously affect speech and swallowing and that
important diagnostic information may be
gained by looking at common impairments.

Neuroscientists and others have questioned
the rather long-standing belief that control
properties underlying motor behaviors, partic-
ularly those from apparently divergent motor
systems, are distinctly represented in the nerv-
ous system.1–3 Instead, although some unique
control elements may exist for specific behav-
iors, our emerging understanding of motor
function is of mutual interactions and common
control elements.1,4 There is converging clinical
and research evidence that speech and swallow-
ing may share these types of common interac-
tions, and consequently, attempts to separate
them from either a diagnostic or treatment
perspective may be neither valid nor clinically
useful. Although it is beyond the scope of the
present review, the consideration of cross-sys-
tem effects has extended beyond motor systems
to include perception–action coupling5 and
interactions between cognitive linguistic ele-
ments and motor function underlying the pro-
duction and development of normal and
disordered speech production.6,7

In this review, we provide a brief introduc-
tion to the cross-system association of swallow-
ing and speech (and other motor behaviors),
highlighting shared control elements and clin-
ical consequences. Our goal is to explain the
utility of viewing speech and swallowing as
being closely linked from both diagnostic and
treatment perspectives.8 This approach is crit-
ical as our population ages and as the effects of
age-related disabilities in speech and swallow-
ing9,10 place additional burdens on health care
delivery.11

SWALLOWING AND ITS NEURAL
CONTROL

Brainstem Pattern Generation
Swallowing has the double function of trans-
porting food and saliva and providing airway

protection during both wakefulness and sleep.
This highly complex coordinated process in-
volves multiple levels of nervous system func-
tion including central pattern generating
circuitry interacting with sensory feedback and
cortical control elements.12–16 Much research
attention has been given to identifying and
characterizing the brain stem pattern-generat-
ing circuitry responsible for the basic swallow-
ing pattern.13,17 Like breathing, chewing, and
walking, interneurons have been identified in
the brain stem that are capable of generating a
basic swallowing pattern in the absence of
ascending (sensory) or descending (e.g., cort-
ical) inputs. These neural networks are referred
to as central pattern generators. The swallowing
central pattern generator is sometimes errone-
ously interpreted as containing all of the neural
circuitry to generate the swallowing ‘‘reflex’’
(i.e., the pharyngeal phase of swallowing).
Classically, central pattern generators have
been thought of as anatomically distinct inter-
neurons generating rhythmic or repetitive mo-
tor outputs.18,19 More recently, they are being
conceptualized as flexibly organized neural net-
works with multifunctional neurons that are
biased to produce task-specific motor behav-
iors.13,20–26 This flexible organization underlies
not only the coordinated activity within the
swallowing system but also the tight neural
cross-system coordination with respiratory
and laryngeal systems.13,27–29 Normal swallow-
ing occurs at precisely timed moments in both
the respiratory and masticatory movements.30–32

Respiration is inhibited, and swallowing occurs
consistently at the end expiratory phase of the
breathing cycle in adult humans swallowing
solid food boluses.29,30,33–35 The tight temporal
relationship between breathing and swallowing
remains despite major modifications to upper
airway structure and function, indicating tight
neural coupling between respiratory and swal-
lowing neural processes.21

Vocal fold closure, laryngeal elevation, and
velopharyngeal closure combine with respira-
tory inhibition to protect the airway during
swallowing.36–38 End expiratory timing of
swallowing facilitates laryngeal elevation for
airway protection and cricopharyngeal sphinc-
ter opening for bolus transport.21,31 Swallowing
occurs within a pause in the masticatory
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sequence with the jaws slightly open, providing
an appropriate biomechanical platform for bo-
lus movement to the pharynx.17,32 As a conse-
quence, respiratory, laryngeal, and masticatory
(oral-articulatory) processes must be precisely
coordinated for appropriate swallowing func-
tion. This emphasizes not only the complexity
of the normal swallowing process but also the
clinical necessity of taking into account cross-
system coordination in both the diagnosis and
treatment of swallowing disorders.39

Sensory Feedback and Cortical
Control Processes
As in other centrally patterned movements,
sensory feedback is crucial for the modification
of the basic swallowing pattern for changing
internal and external conditions. It is well
known that sensory receptors located in the
oral-pharyngeal cavity are responsible for the
initiation of the pharyngeal phase of swallow-
ing. Less well known is the important contri-
bution of sensory control processes in
regulating and adapting swallowing function
for changing environmental constraints. For
example, increases in bolus volume and consis-
tency changes the timing and pattern of all
phases of swallowing, including the pharyngeal
and esophageal components that are often
thought to be independent of feedback and
reflexive in nature.40–46 Feedback from respira-
tory volume and phase sensors also feed to
swallowing control processes, indicating an
even broader effect of sensory feedback on
control processes.31,47 Cortical control proc-
esses are crucially important in the interpreta-
tion of these sensory regulating signals and in
the modification of basic pattern generation in
response to changing physiological and me-
chanical constraints. Cortical lesions, as a con-
sequence, negatively affect all aspects of the
swallowing synchrony including pharyngeal
and esophageal control processes.15 Swallowing,
therefore, is not a reflex but instead a complex
coordinated process produced by multiple levels
of neural control distributed across several key
physiological systems.Understanding the under-
lying pathophysiology and neural control param-
eters is crucial if we are to be able to properly
diagnosis and treat swallowing disorders.39,48,49

SPEECH AND SWALLOWING
The same systems involved in swallowing also
participate in the production of speech1 (for a
review, see McFarland and Lund17). The res-
piratory system provides the driving force for
sound production, the laryngeal system pro-
vides the voice source through vocal fold vibra-
tion, and the oral-articulatory system shapes the
sound generated by the vibrating folds to
produce specific speech sounds.

Clearly, like swallowing, the neural con-
trol processes involved in speech production
are diverse and include higher-level motor
control as well as brainstem and cerebellar
systems and feedback from a variety of sensory
afferents.50 Sensory inputs including audition
are crucially important for speech develop-
ment,51–53 and for the modification of speech
movements in response to structural or func-
tional perturbations to control processes, such
as those related to changes in oral form and
function.54

The fact that common systems/muscles
are used for speech production and feeding/
swallowing indicates a high degree of at least
peripheral motor control overlap. This cross-
system interaction, however, extends to much
higher levels of motor control and coordina-
tion. Here we suggest that the oral-facial-
laryngeal system is organized in a manner
that is largely task independent (or integra-
tive), through a shared network of brain re-
gions that is modulated by task demands.55

The alternative hypothesis is that task-specific
speech or swallowing movements of the oral-
articulatory, laryngeal, and respiratory struc-
tures are controlled through distinct and
largely nonoverlapping neural networks.56 Re-
cent imaging studies, however, have revealed
that swallowing is controlled through a net-
work of cortical areas that is far more distrib-
uted than traditionally assumed57–62 and that
this network appears to be common to other
movements including speech production. For
example, using functional magnetic resonance
imaging techniques, Martin and colleagues60

compared brain activation associated with
swallowing, tongue movements, and thumb-
to-finger contact. Subjects were instructed to
swallow accumulated saliva (during a 2-minute
trial period), raise the tongue to the palate
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and maintain this position for 2 seconds, and
alternately oppose the finger to the thumb at a
rate of two times per second. Results showed
large regions of brain activation common to
swallowing and tongue movement (over
1200 mm3) and, to a lesser extent, between
swallowing and oppositional finger move-
ments (69 mm3). There were also regions of
overlap between tongue and finger movements
(267 mm3). Activity in the supplementary
motor area and in the anterior cingulate area
(Brodmann areas [BA] 32/24) was found for
all motor tasks. Additional regions common to
swallowing and tongue movements included
the postcentral gyrus (BA 3 and 4), the cuneus
and precuneus, and the supramarginal gyrus. A
subsequent functional magnetic resonance
imaging study conducted by the same group62

further demonstrated that swallowing accu-
mulated saliva is associated with activity in
the primary motor and primary sensory areas,
in the insula, and in the anterior cingulate.
These results are largely consistent with results
of other studies of voluntary swallowing con-
ducted in different laboratories.57–59,63

Other studies have looked at the potential
overlap in the cortical representation of speech
and other orofacial movements.64–66 For exam-
ple, Saarinen et al66 used magnetoencephalog-
raphy to study activity in the primary motor
area for speech (phoneme and word produc-
tion), as contrasted to a series of matched
orofacial movements involving the lips, the
tongue, or the mandible. Results showed that
the time-course and amplitude of the rhythmic
activity in the b band in the face representation
of the primary motor area was nearly identical
for all the tasks.

Taken together, the results of these and
other imaging studies indicate a complex sys-
tem of neural control elements that is common
to speech, swallowing, and other orofacial
movements. This includes the primary motor
and the primary somatosensory areas, as well as
other regions such as the supplementary motor
area, the anterior cingulate area, the insula, and
the cerebellum.58,60,61,64,67,68

Most if not all of these brain regions
(with the possible exception of the insula)
also contribute to the production of other
complex movement sequences in addition to

swallowing and speech production, such as
finger and reaching movements.69–71 For ex-
ample, although Broca’s area has traditionally
been thought of as being exclusive to speech
production, recent imaging and lesion studies
have revealed this area to be importantly
involved in a wide range of tasks including
object manipulation,72 finger movement exe-
cution and imagination,73 action imita-
tion,74,75 observation of object-related mouth
movements (biting an apple and chewing),
and object-related hand/arm movements
(reaching and grasping a ball or a little cup
with the hand).76 Potentially shared neural
elements lead to the prediction that there
might be mutual interactions between appa-
rently divergent motor behaviors, such as
speech and other whole-body movements.
To investigate these potential interactions,
Gentilucci et al1 had subjects produce several
tasks involving reaching at and grasping an
object of different sizes while simultaneously
opening the mouth or pronouncing a syllable.
Reaching and grasping the larger object re-
sulted in increased lip opening and vocal
loudness when contrasted with the smaller-
object manipulation, suggesting cross-system
interactions in amplitude scaling across these
seemingly different motor behaviors.

Developmental Interactions
Additional motivation for considering potential
cross-system interactions between speech and
swallowing/feeding comes from a developmen-
tal perspective. Swallowing is observable in the
developing fetus by the twelfth week. In fact,
swallowing is crucial for the regulation of
amniotic fluid in the developing infant.77,78

At birth, the infant must make the transition
between swallowing in a liquid environment to
integrating swallowing with airway-protective
mechanisms. Swallowing and its coordination
with breathing (and sucking) are unstable at
birth and develop postnatally. Sensory feed-
back, experience, and neural maturation com-
bine to encourage the maturation of feeding
and swallowing. Experience is crucial, and there
are critical and sensitive periods of swallowing
development during which experience-related
feedback is necessary for normal development.
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For example, newborns that are tube fed for
prolonged periods have difficulty in the normal
development of liquid and bolus swallowing.79

It is well known that there are similar critical or
sensitive periods in speech/language develop-
ment.80 Extending the concept of sensitive or
critical periods, much experimental and clinical
attention has been given to the potential inter-
dependence of communicative development on
appropriate feeding and swallowing progression
in infants and children. That is, normal feeding
and swallowing development may be important
precursors for appropriate speech language de-
velopment. In fact, feeding and swallowing
difficulties together with other neurodevelop-
mental factors may provide important early-
detection indicators for later speech and lan-
guage difficulties in developing infants.81 This
places additional importance on the mutual
consideration of speech and swallowing impair-
ments.

At the other end of the spectrum, there are
a variety of changes in swallowing control and
function related to normal aging that must be
taken into account when considering disor-
dered function consequent to disease and
stroke.39,44,82 These include changes in muscle
function and coordinative timing among swal-
lowing events (including the coordination with
respiratory processes). Further, response to be-
havioral intervention based on the neural plas-
ticity of affected neural structure and function
(the basis of all neurorehabilitation) has been
shown to be age dependent, decreasing with
advancing age.83,84

Clinical Evidence of Cross-System
Interactions
We now turn our attention to additional con-
siderations of potential cross-system interac-
tions between speech and swallowing as
revealed by the co-occurrence of speech and
swallowing impairments.

There is a great deal of evidence of the co-
occurrence of voice/speech and swallowing im-
pairments.85–90 Martin and Corlew91 studied
the co-occurrence of swallowing disorders and
speech/language impairments in 115 patients in
Veteran’s Administration Medical Center (a
long-term care facility) with radiographically

confirmed swallowing impairments. Of all pa-
tients, 93% of those presenting swallowing
impairments also had co-occurring speech dis-
orders. A retrospective follow-up study of 91
patients in an acute care setting by Lapointe
and McFarland8 revealed that 79% of all pa-
tients judged to have swallowing impairments
also presented communication disorders.

The relationship between speech disorders
and swallowing impairments is not a simple one
and requires a detailed understanding of the
nature of the neurological impairment as well as
of the specific speech impairment. For example,
Nishio and Niimi89 assessed the correlation
between measures of speech intelligibility and
swallowing disorders in 113 dysarthric speak-
ers. A very high correlation was found between
decreased speech intelligibility and the presence
of swallowing impairments. However, the prev-
alence and level of severity of swallowing dis-
orders differed between dysarthria types,
arguing for a thorough understanding of under-
lying speech motor disorders as potential cor-
relates of swallowing disorders.

The co-occurrence of swallowing and
speech impairments indicates common or at
least overlapping pathology. Therefore, it
seems reasonable to assume that therapeutic
intervention targeting one or both of the sys-
tems may have cross-system or perhaps com-
plementary effects.92 In a recent preliminary
treatment study, El-Sharkawi et al93 applied
well-established speech/voice treatment to pa-
tients with swallowing disorders. This treat-
ment, the Lee Silverman Voice Treatment,
involves the recalibration of a patient’s sensor-
imotor system with intensive vocal exercises
focusing on increased loudness. Such treat-
ments were designed for and typically applied
to patients with Parkinson’s disease to improve
their loudness and communicative effective-
ness. Videofluoroscopic results revealed more
efficient swallowing in the swallowing-
disordered patients subsequent to this speech
treatment.

These and other treatment data from di-
vergent motor systems indicate the potential
utility of cross-system treatment effects, and
they reinforce the clinical importance of view-
ing speech and swallowing impairments within
a global motor control context. The clinical
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implications are evident. The tight correlation
between speech and swallowing impairments
has important diagnostic significance. The
presence of one of these disorders may signal
the presence of another. In fact, anecdotal
clinical evidence indicates that specific voice
disorders are so highly correlated with swallow-
ing impairment that speech-language patholo-
gists immediately refer susceptible patients for
more detailed swallowing exams when their
disorders are detected by careful speech-lan-
guage examination. However, the inverse is less
commonly appropriate; that is, the presence of a
swallowing problem does not as frequently
trigger a consult for voice evaluation. Nonethe-
less, the complex nature of swallowing impair-
ments and their potential relationship to speech
production, including developmental factors,
argues for a thorough understanding of the
anatomy, physiology, and neural control proc-
esses underlying both of these motor behaviors.
Understanding the underlying pathology may
provide important treatment directions and
increase treatment efficacy. Given the fact
that there are multiple points of potential
cross-system interaction, treatments targeting
one system, such as speech, may have important
distributed effects and improve swallowing
function. That is, treatments may have a more
‘‘global’’ effect that traverses the specific tar-
geted function.

One obvious extension of the potential
transference of treatment effects from one
motor behavior to another (such as speech to
swallowing) is to target each impaired function
simultaneously in the same clinical session.
That is, to provide highly specific and func-
tionally relevant treatment tasks directed at
each ‘‘system’’ but with a common treatment
goal. Such complimentary treatment regimes
have recently been developed based on the Lee
Silverman Voice Treatment for Parkinson’s
disease, in which speech and whole-body
movements (such as reaching) are trained
simultaneously and with the overall treatment
goal of increasing movement amplitude across
these apparently divergent motor systems.94–96

Clearly, the potential clinical benefit of cross-
system interactions, or complimentary effects
of common treatment protocols, will depend
in as-yet-unknown ways on a variety of disease

parameters including type, severity, time post-
onset, patient age, and other concurrent im-
pairments. As highlighted in this brief review,
the numerous points of interaction within the
nervous system underlying presumably diverse
motor behaviors such as speech and swallow-
ing argues for continued investigation of
the clinical utility of cross-system treatment
interactions.

SUMMARY
We have briefly reviewed the complex neuro-
logical mechanisms involved in the control and
coordination of swallowing. We have discussed
that normal function involves several levels of
nervous system activity including pattern-gen-
erating circuitry, cortical mechanisms, and sen-
sory feedback. We provided a brief review of
common underlying control processes involved
in both speech and swallowing, the co-occur-
rence of swallowing and speech/language im-
pairments related to disease and damage, and
the potential clinical benefit of treating swal-
lowing and speech/language disorders within a
global motor control construct.
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Frequence 2004;16:22–25

9. Ruber RJ. Redefining the survival of the fittest:

communication disorders in the 21st century.

Laryngoscope 2000;110:241–245

10. Schindler JS, Kelly JH. Swallowing disorders in the

elderly. Laryngoscope 2002;112:589–602

11. Byles J. The epidemiology of communication and

swallowing disorders. Adv Speech Lang Pathol

2005;7:1–7

12. Cot F, McFarland DH. Anatomie-physiologie de
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