Working memory and speech perception: evidence from transcranial magnetic stimulation and brain morphometry

LABORATOIRE DES NEUROSCIENCES DE LA PAROLE ET DE L'AUDITION SPEECH AND HEARING

NEUROSCIENCE LABORATORY

Introduction

An influential model of verbal working memory (vWM) proposes that the maintenance of phonological information in vWM is carried by the phonological loop, which is composed of a phonological store and an articulatory rehearsal system [1]. A question that remains unanswered is whether the phonological loop is strictly phonological, or, alternatively, whether it also deals with non-verbal auditory information, as behavioural evidence suggests [2,3] and as proposed in Baddeley's most recent model of vWM [4]. In the current study, we tested the hypothesis that the phonological loop holds auditory verbal and non-verbal information. We used single pulse transcranial magnetic stimulation (TMS) combined to a delayed auditory discrimination task (same/different judgment) with speech and acoustically complex non-speech sounds to determine whether two core vWM regions (i.e. posterior inferior frontal gyrus and supramarginal gyrus) are involved in the maintenance of auditory verbal and non-verbal information.

Method

Participants

- 18 participants (10 females, 17-35 years old)
- No contraindication to MRI or TMS
- Normal cognitive level (MOCA 29±0.9/30)
- Normal hearing (pure tone audiometry)

Experimental task

- Auditory discrimination task with two categories of sounds (bird songs and syllables; Fig. 1)
- Performance measured in terms of RTs and accuracy

MRI and TMS equipment

- A high-resolution anatomical scan was acquired for each participant
- Super Rapid2 stimulator (Magstim, UK) with neuronavigation
- system (Brainsight: Rogue Research)
- Surface EMG to the right FDI muscle

TMS protocol (Fig. 2)

- Passive motor threshold [(MT); FDI muscle; 50mV, 5/10 trials]
- Stimulation intensity for experiment = 110% of MT(59.7 \pm 7.6%)
- Online single pulse TMS to two targets: pIFG and aSMG, at 2
- stimulation times (250ms, 500ms) during the discrimination task
- 384 trials in total including 192 on each site and 48 sham trials Analyses
- rANOVAs on RTs (i.e. difference between different and identical sequences) 📻 and accuracy with target (pIFG, aSMG), stimulation (SHAM, TMS@250, TMS@500) and auditory category (speech and non-speech) as the within subject factors were conducted
- The cortical thickness covariance network associated with the pIFG and aSMG was examined with Freesurfer

Isabelle Deschamps^{1,2}, Melody Courson^{1,2} & Pascale Tremblay^{1,2}

1. Department of Rehabilitation, Faculty of Medicine, Université Laval, QC, Canada 2. CERVO Brain Research Centre, QC, Canada

Method and results

INNOVATION.CA