Imagerie du faisceau longitudinal moyen dans le vieillissement : Résultats préliminaires

Maxime Perron¹, Isabelle Deschamps¹, Daniel Kennedy-Higgins², Maxime Descoteaux³ et Pascale Tremblay¹

(1) Université Laval, Centre de recherche CERVO, (2) University College London,

(3) Université de Sherbrooke

SUNIVERSITÉ DE SHERBROOKE

Introduction

RVO

QUÉBEC

0

Le vieillissement entraîne une dégradation de la matière blanche. Toutefois, le vieillissement de tous les faisceaux ainsi que leur impact fonctionnel n'est pas connu.

Ici nous nous sommes intéressés à un faisceau peu caractérisé, le faisceau longitudinal moyen (MdLF)

Il a été proposé que le MdLF est composé d'un faisceau antérieur reliant le lobule pariétal inférieur au pôle temporal (MdLF_{IPL}), et un faisceau postérieur reliant le lobule supérieur pariétal au pôle temporal (MdLF_{SPL}) (Makris et al., 2013).

Fig. 2. Faisceaux MdLFIPL (jaune) et MdLFSPL (bleu) Âgés Jeunes

• Pour la RD, l'ANOVA mixte révèle un effet principal du Groupe ($F_{(1,27)} = 16.95$, p $\leq .001$, $\eta 2 = 16.95$.389) (Figure 5A), ainsi qu'une interaction entre le faisceau (MdLF_{IPL}, MdLF_{SPL}) et le Groupe (jeunes, âgés), laquelle révèle un déclin légèrement plus prononcé pour le MdLF_{SPL} que pour le $MdLF_{IPL}$ ($F_{(1,27)} = 5.03$, p = .033, $\eta 2 = .157$) (Figure 5B). Aucune différence entre les hémisphères n'est observée ni aucune interaction avec le facteur Hémisphère.

Fig. 4. Résultats pour la FA (MdLF_{IPL} et MdLF_{SPL}) A. Effet principal du Groupe **B. Interaction**

Il a été proposé que le faisceau MdLF, en particulier le faisceau MdLF_{IPL}, pourrait être impliqué dans le traitement du langage oral et l'attention, alors que le faisceau MdLF_{SPI} serait impliqué dans les fonctions visuo-spatiales et l'intégration audiovisuelles.

Méthode

• 14 adultes jeunes (M = 30 ± 10.49 ans; 19-46 ans).

DE LA PAROLE ET DE L'AUDITION

EUROSCIENCE LABORATORY

SPEECH AND HEARING

- 15 adultes âgés ($M = 71 \pm 5.85$ ans; 65-84 ans).
- Whole-body Philips 3.0 Tesla Achieva TX (Figure 1A)
- Images structurelles (MPRAGE ; 1 mm3).
- Images HARDI (TR = 8.5 ms ; TE = 76.7 ms; b = 1500 s/m2, 60 directions, 128 volume, no gap, 1.8 mm).
- Parcellation anatomique avec Freesurfer (Desikan et al., 2006) (Figure 1B) utilisée en conjonction avec le « White Matter Query Language (WMQL) » (Wassermann et al., 2016).
- Pré-traitement et tractographie avec DIPY (Descoteaux et al., 2008; Garyfallidis et al., 2014).
- Extraction de métriques DTI et FODF, incluant la FA (anisotropie fractionnelle) et la RD (diffusivité radiale), lesquelles ont une relation inversement proportionnelle.

Fig. 1. IRM et parcellation Freesurfer

A. IRM 3T

B. Parcellation utilisée

Résultats préliminaires

- Chez tous les participants, les deux faisceaux ont pu être identifiés bilatéralement (Figure 2).
- Des tests t montrent que la FA est plus basse chez les personnes âgées pour les deux faisceaux (Figure 3) et que la RD est plus élevée (non illustrée).
- Pour la FA, une ANOVA mixte avec Faisceaux et Hémisphères comme mesures intra-sujets et Groupe comme facteur inter-sujet montre un effet principal du Groupe (F(1,27) = 29.19, $p \le .001$, $\eta^2 = .52$) (Figure 4A), ainsi qu'une interaction entre le Faisceau (MdLF_{IPL}, MdLF_{SPL}) et le Groupe (jeunes, âgés), laquelle révèle un déclin plus prononcé pour le MdLF_{IPL}que pour le MdLF_{SPL}(F(1,27) = 21.42, p \leq .001, η 2 = .442) (Figure 4B). Aucune différence entre les hémisphères n'est observée ni aucune interaction impliquant le facteur Hémisphère.

Discussion et Conclusions

- Le vieillissement semble entraîner une perte de la myéline dans le MdLF, particulièrement dans le MdLFIPL.
- Nos prochaines analyses visent à examiner l'impact potentiellement distinct du déclin de MdLFIPL et de MDLFSPL sur l'audition et le traitement du langage oral.

Références

Descoteaux, Maxime, Wiest-Daesslé, Nicolas, Prima, Sylvain, Barillot, Christian, & Deriche, Rachid. (2008). Impact of Rician Adapted Non-Local Means Filtering on HARDI. In D. Metaxas, L. Axel, G. Fichtinger & G. Székely (Eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2008: 11th International Conference, New York, NY, USA, September 6-10, 2008, Proceedings, Part II (pp. 122-130). Berlin, Heidelberg: Springer Berlin Heidelberg.

Desikan, Rahul S., Segonne, Florent, Fischl, Bruce, Quinn, Brian T., Dickerson, Bradford C., Blacker, Deborah, . . . Killiany, Ronald J. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage, 31(3), 968-980.

Garyfallidis, Eleftherios, Brett, Matthew, Amirbekian, Bagrat, Rokem, Ariel, Van Der Walt, Stefan, Descoteaux, Maxime, & Nimmo-Smith, Ian. (2014). Dipy, a library for the analysis of diffusion MRI data. Frontiers in Neuroinformatics, 8. doi: 10.3389/fninf.2014.00008 Makris, N., Preti, M. G., Asami, T., Pelavin, P., Campbell, B., Papadimitriou, G. M., . . . Kubicki, M. (2013). Human middle longitudinal fascicle: variations in patterns of anatomical connections. Brain Struct Funct, 218(4), 951-968. doi: 10.1007/s00429-012-0441-2 Wassermann, D., Makris, N., Rathi, Y., Shenton, M., Kikinis, R., Kubicki, M., & Westin, C. F. (2016). The white matter query language: a novel approach for describing human white matter anatomy. Brain Struct Funct, 221(9), 4705-4721. doi: 10.1007/s00429-015-1179-4 Garyfallidis, Eleftherios, Brett, Matthew, Amirbekian, Bagrat, Rokem, Ariel, Van Der Walt, Stefan, Descoteaux, Maxime, & Nimmo-Smith, Ian. (2014). Dipy, a library for the analysis of diffusion MRI data. Frontiers in Neuroinformatics, 8. doi: 10.3389/fninf.2014.00008

